DOI QR코드

DOI QR Code

Spectral Analysis of Resting EEG in Brain Compartments

휴지기 뇌파의 구역별 주파수 분석

  • Lee, Migyung (Department of Neuropsychiatry, National Center for Mental Health)
  • 이미경 (국립정신건강센터 정신건강의학과)
  • Received : 2020.11.20
  • Accepted : 2020.12.25
  • Published : 2020.12.31

Abstract

Objectives: Brain maturation involves brain lateralization and asymmetry to achieve efficient information processing and cognitive controls. This study elucidates normal brain maturation change during the gap between ages 6-9 and age 14-17 using resting EEG. Methods: An EEG dataset was acquired from open source MIPDB (Multimodal Resource for Studying Information Processing in the Developing Brain). Ages 6-9 (n = 24) and ages 14-17 (n = 26) were selected for analysis, and subjects with psychiatric illness or EEG with severe noise were excluded. Finally, ages 6-9 (n = 14) and ages 14-17 (n = 11) were subjected to EEG analysis using EEGlab. A 120-sec length of resting EEG when eyes were closed was secured for analysis. Brain topography was compartmentalized into nine regions, best fitted with brain anatomical structure. Results: Absolute power of the delta band and theta band in ages 6-9 was greater than that of ages 14-17 in the whole brain, and, also is relative power of delta band in frontal compartment, which is same line with previous studies. The relative power of the beta band of ages 14-17 was greater than that of ages 6-9 in the whole brain. In asymmetry evaluation, relative power of the theta band in ages 14-17 showed greater power in the left than right frontal compartment; the opposite finding was noted in the parietal compartment. For the alpha band, a strong relative power distribution in the left parietal compartment was observed in ages 14-17. Absolute and relative power of the alpha band is distributed with hemispheric left lateralization in ages 14-17. Conclusion: During the gap period between ages 6-9 and ages 14-17, brain work becomes more complicated and sophisticated, and alpha band and beta band plays important roles in brain maturation in typically developing children.

목 적 : 뇌가 성숙해감에따라, 비대칭과 편측성역시 기능적, 효율적인 관점에서 볼 때, 성숙과 더불어 정보처리를 효과적으로 하기 위한 과정이라 할 수 있다. 인지적 복잡성이 높아지는 시기인 6~9세와 14~17세 사이의 뇌의 변화를 휴지기 뇌파를 주파수 분석을 하여 알아 본다. 방 법 : 본 연구는 6~9세(n = 24)와 14~17세(n = 26)의 피험자들의 뇌파는 공개된 자료(Multimodal Resource for Studying Information Processing in the Developing Brain, MIPDB)를 분석하였고, 정신과적 질환이 있거나, 잡파가 심한 뇌파의 피험자는 제외하여 최종적으로 6~9세(n = 14)와 14~17세(n = 11)을 대상으로, EEGlab을 이용하여 뇌파를 분석하였고, 적어도 2분이상의 휴지기 뇌파 중 눈을 감은 상태의 뇌파를 이용하여 주파수 분석을 하였다. 뇌의 구역을 총 9구획으로 나눠서 주파수 분석을 하여, 주파수별 비대칭성과 편측성을 측정하였다. 결 과 : 전반적으로 서파의 파워는 나이가 어릴수록 높았으며, 이 현상은 절대파워와 상대파워에 상관없이 나타났다. 베타밴드의 상대파워는 좌우 편측성없이 14~17세 그룹이 높았다. 비대칭성의 경향은 휴지기 뇌파에서 세타밴드와 알파밴드의 상대파워에서만 두 그룹간의 차이가 관찰되었으며, 세타파는 왼쪽 전두엽 구획에서 14~17세군이 오른쪽 전두엽구획에 비해서 높게 측정되었고, 이 현상은 두정엽 구획으로 갈 수록 반대의 경향, 즉 두정엽 구획에서는 오른쪽 세타밴드파워가 왼쪽의 세타밴드파워에비해서 높게 측정되었다. 알파밴드의 상대파워는 두정엽구획에서 왼쪽의 파워가 오른쪽의 파워보다 높게 측정되었다. 편측성을 보이는 주파수는 알파밴드였으며, 절대파워와 상대파워 모두에서 왼쪽의 알파밴드파워가 오른쪽에 비해서 높게 나타났으며 그 차이가 통계적으로 유의미하였다. 결 론 : 6~9세의 피험자들에 비해서 14~17세의 피험자들은 성장기를 거치며 비교적 수준이 높은 인지기능 및 수행기능을 하게 되고, 이 기능과 관련하여 베타밴드와 알파밴드가 이 변화를 반영한다고 볼 수 있다.

Keywords

References

  1. Anokhin AP, Birbaumer N, Lutzenberger W, Nikolaev A, Vogel F. Age increases brain complexity. Electroencephalogr Clin Neurophysiol 1996;99:63-68. https://doi.org/10.1016/0921-884X(96)95573-3
  2. Benasich AA, Gou Z, Choudhury N, Harris KD. Early cognitive and language skills are linked to resting frontal gamma power across the first 3 years. Behav Brain Res 2008;195:215-222. https://doi.org/10.1016/j.bbr.2008.08.049
  3. Crow TJ. Schizophrenia as failure of hemispheric dominance for language. Trends Neurosci 1997;20:339-343. https://doi.org/10.1016/S0166-2236(97)01071-0
  4. Dehaene-Lambertz G, Dehaene S. Speed and cerebral correlates of syllable discrimination in infants. Nature 1994;370:292-295. https://doi.org/10.1038/370292a0
  5. Delorme A, Makeig S. EEGLAB: an open source toolbox for analysis of single-trial EEG dynamics including independent component analysis. J Neurosci Methods 2004;134:9-21. https://doi.org/10.1016/j.jneumeth.2003.10.009
  6. Friederici AD. The neural basis of language development and its impairment. Neuron 2006;52:941-952. https://doi.org/10.1016/j.neuron.2006.12.002
  7. Hagemann D, Hewig J, Walter C, Naumann E. Skull thickness and magnitude of EEG alpha activity. Clin Neurophysiol 2008;19:1271-1280.
  8. Herbert MR, Ziegler DA, Deutsch CK, O'Brien LM, Kennedy DN, Filipek PA, et al. Brain asymmetries in autism and developmental language disorder: a nested whole-brain analysis. Brain 2005;128(Pt 1):213-226. https://doi.org/10.1093/brain/awh330
  9. Huttenlocher PR, Dabholkar AS. Regional differences in synaptogenesis in human cerebral cortex. J Comp Neurol 1997;387: 167-178. https://doi.org/10.1002/(SICI)1096-9861(19971020)387:2<167::AID-CNE1>3.0.CO;2-Z
  10. Kharitonova M, Martin RE, Gabrieli JD, Sheridan MA. Cortical gray-matter thinning is associated with age-related improvements on executive function tasks. Dev Cogn Neurosci 2013;6: 61-71. https://doi.org/10.1016/j.dcn.2013.07.002
  11. Klimesch W, Sauseng P, Hanslmayr S. EEG alpha oscillations: the inhibition-timing hypothesis. Brain Res Rev 2007;53:63-88. https://doi.org/10.1016/j.brainresrev.2006.06.003
  12. Lenartowicz A, Mazaheri A, Jensen O, Loo SK. Aberrant modulation of brain oscillatory activity and attentional impairment in attention-deficit/hyperactivity disorder. Biol Psychiatry Cogn Neurosci Neuroimaging 2018;3:19-29.
  13. Morillon B, Liegeois-Chauvel C, Arnal LH, Benar CG, Giraud AL. Asymmetric function of theta and gamma activity in syllable processing: an intra-cortical study. Front Psychol 2012;3:248. https://doi.org/10.3389/fpsyg.2012.00248
  14. Niessing J, Ebisch B, Schmidt KE, Niessing M, Singer W, Galuske RA. Hemodynamic signals correlate tightly with synchronized gamma oscillations. Science 2005;309:948-951. https://doi.org/10.1126/science.1110948
  15. Orton S. Reading, Writing and Speech Problems in Children: W W Norton & Co;1937.
  16. Papagiannopoulou EA, Lagopoulos J. Resting state eeg hemispheric power asymmetry in children with dyslexia. Front Pediatr 2016; 4:11.
  17. Rubia K, Overmeyer S, Taylor E, Brammer M, Williams SC, Simmons A, et al. Functional frontalisation with age: mapping neurodevelopmental trajectories with fMRI. Neurosci Biobehav Rev 2000;24:13-19. https://doi.org/10.1016/S0149-7634(99)00055-X
  18. Salat DH, Tuch DS, Greve DN, van der Kouwe AJ, Hevelone ND, Zaleta AK, et al. Age-related alterations in white matter microstructure measured by diffusion tensor imaging. Neurobiol Aging 2005;26:1215-1227. https://doi.org/10.1016/j.neurobiolaging.2004.09.017
  19. Segalowitz SJ, Santesso DL, Jetha MK. Electrophysiological changes during adolescence: a review. Brain Cogn 2010;72:86-100. https://doi.org/10.1016/j.bandc.2009.10.003
  20. Somsen RJ, van't Klooster BJ, van der Molen MW, van Leeuwen HM, Licht R. Growth spurts in brain maturation during middle childhood as indexed by EEG power spectra. Biol Psychol 1997;44:187-209. https://doi.org/10.1016/S0301-0511(96)05218-0
  21. Spironelli C, Angrilli A. Brain plasticity in aphasic patients: intraand inter-hemispheric reorganisation of the whole linguistic network probed by N150 and N350 components. Sci Rep 2015;5: 12541. https://doi.org/10.1038/srep12541
  22. Takano T, Ogawa T. Characterization of developmental changes in EEG-gamma band activity during childhood using the autoregressive model. Acta Paediatr Jpn 1998;40:446-452. https://doi.org/10.1111/j.1442-200X.1998.tb01966.x
  23. Uhlhaas PJ, Roux F, Rodriguez E, Rotarska-Jagiela A, Singer W. Neural synchrony and the development of cortical networks. Trends Cogn Sci 2010;14:72-80. https://doi.org/10.1016/j.tics.2009.12.002
  24. Whitford TJ, Rennie CJ, Grieve SM, Clark CR, Gordon E, Williams LM. Brain maturation in adolescence: concurrent changes in neuroanatomy and neurophysiology. Hum Brain Mapp 2007; 28:228-237. https://doi.org/10.1002/hbm.20273
  25. Womelsdorf T, Schoffelen JM, Oostenveld R, Singer W, Desimone R, Engel AK, et al. Modulation of neuronal interactions through neuronal synchronization. Science 2007;316:1609-1612. https://doi.org/10.1126/science.1139597