DOI QR코드

DOI QR Code

Comparative Measurement of Transverse Nuclear Magnetization of Polarized 129Xe and 131Xe by Spin-exchange Optical Pumping

  • Yu, Ye Jin (Department of Physics, Pusan National University) ;
  • Min, Seong Ho (Department of Physics, Pusan National University) ;
  • Moon, Han Seb (Department of Physics, Pusan National University)
  • Received : 2020.09.29
  • Accepted : 2020.10.27
  • Published : 2020.12.25

Abstract

We analyze the transverse nuclear magnetizations of 129Xe and 131Xe in a vapor cell containing natural Xe, 87Rb, and buffer gases. Th e Xe atoms are polarized th rough spin-exch ange optical pumping (SEOP) with Rb atoms under low-magnetic-field conditions. From the free-induction-decay (FID) signal, we measure the nuclear magnetization of the Xe atoms in the Xe-Rb vapor cell. Furthermore, we measure the dependence of the gyromagnetic ratio on the magnetization of 129Xe and 131Xe by examining the amplitude of the FID signal of each isotope, and we evaluate the relationship between the magnetic field gradient and transverse relaxation rate for both of the 129Xe and 131Xe isotopes.

Keywords

References

  1. J. Kitching, S. Knappe, and E. A. Donley, "Atomic sensors - a review," IEEE Sens. J. 11, 1749-1758 (2011). https://doi.org/10.1109/JSEN.2011.2157679
  2. K. F. Woodman, P. W. Franks, and M. D. Richards, "The nuclear magnetic resonance gyroscope: a review," J. Navig. 40, 366-384 (1987). https://doi.org/10.1017/S037346330000062X
  3. D. Meyer and M. Larsen, "Nuclear magnetic resonance gyro for inertial navigation," Gyroscopy Navig. 5, 75-82 (2014). https://doi.org/10.1134/S2075108714020060
  4. H. Dong and Y. Gao, "Comparison of compensation mechanism between an NMR gyroscope and an SERF gyroscope," IEEE Sens. J. 17, 4052-4055 (2017). https://doi.org/10.1109/JSEN.2017.2703601
  5. T. W. Kornack, R. K. Ghosh, and M. V. Romalis, "Nuclear spin gyroscope based on an atomic comagnetometer," Phys. Rev. Lett. 95, 230801 (2005). https://doi.org/10.1103/PhysRevLett.95.230801
  6. T. W. Kornack, "A test of CPT and Lorentz symmetry using a K-3 He co-magnetometer," Dr. Dissertation Princeton University, USA (2005).
  7. M. E. Limes, D. Sheng, and M. V. Romalis, "3He-129Xe comagnetometery using 87Rb detection and decoupling," Phys. Rev. Lett. 120, 033401 (2018). https://doi.org/10.1103/physrevlett.120.033401
  8. A. Korver, D. Thrasher, M. Bulatowicz, and T. G. Walker, "Synchronous spin-exchange optical pumping," Phys. Rev. Lett. 115, 253001 (2015). https://doi.org/10.1103/PhysRevLett.115.253001
  9. D. Budker and D. F. J. Kimball, Optical Magnetometry (Cambridge University Press, NY, USA, 2013), pp. 375-376.
  10. E. A. Donley, J. L. Long, T. C. Liebisch, E. R. Hodby, T. A. Fisher, and J. Kitching, "Nuclear quadrupole resonances in compact vapor cells: the crossover between the NMR and the nuclear quadrupole resonance interaction regimes," Phys. Rev. A 79, 013420 (2009). https://doi.org/10.1103/physreva.79.013420
  11. X. Liu, C. Chen, T. Qu, K. Yang, and H. Luo, "Transverse spin relaxation and diffusion-constant measurements of spin polarized 129Xe nuclei in the presence of a magnetic field gradient," Sci. Rep. 6, 24122 (2016). https://doi.org/10.1038/srep24122
  12. E. J. Eklund, "Microgyroscope based on spin-polarized nulcei," Ph. D. Dissertation, University of California, USA (2008).
  13. T. G. Walker and W. Happer, "Spin-exchange optical pumping of noble-gas nuclei," Rev. Mod. Phys. 69, 629 (1997). https://doi.org/10.1103/RevModPhys.69.629
  14. A.-M. Oros and N. J. Shah, "Hyperpolarized xenon in NMR and MRI," Phys. Med. Biol. 49, R105 (2004). https://doi.org/10.1088/0031-9155/49/20/R01
  15. M. Fox, Quantum Optics (Oxford University Press, NY, USA, 2006), pp. 339-345.