DOI QR코드

DOI QR Code

Velocity and Distance Estimation-based Sensing Data Collection Interval Control Technique for Vehicle Data-Processing Overhead Reduction

차량의 데이터 처리 오버헤드를 줄이기 위한 이동 속도와 거리 추정 기반의 센싱 데이터 수집 주기 제어 기법

  • Kwon, Jisu (School of Electronic and Electrical Engineering, Kyungpook National University) ;
  • Park, Daejin (School of Electronic and Electrical Engineering, Kyungpook National University)
  • Received : 2020.11.12
  • Accepted : 2020.11.15
  • Published : 2020.12.31

Abstract

Sensor nodes that directly collect data from the surrounding environment have many constraints, such as power supply and memory size, thus efficient use of resources is required. In this paper, in a sensor node that receives location data of a vehicle on a lane, the data reception period is changed by the target's speed estimated by the Kalman filter and distance weight. For a slower speed of the vehicle, the longer data reception interval of the sensor node can reduce the processing time performed in the entire sensor network. The proposed method was verified through a traffic simulator implemented as MATLAB, and the results achieved that the processing time was reduced in the entire sensor network using the proposed method compared to the baseline method that receives all data from the vehicle.

주변 환경으로부터 직접 데이터를 수집하는 센서 노드는 많은 제약 조건을 가지기 때문에 자원의 효율적인 사용이 필요하다. 본 논문에서는 도로를 주행 중인 차량의 위치 데이터를 수신하는 센서 노드에서, 칼만 필터로 추정한 대상의 속도와 이동 거리 가중치로 데이터 수신 주기를 변경한다. 차량의 속도가 느릴수록 센서 노드의 데이터 수신 주기를 길게 함으로써 전체 네트워크에서 이루어지는 연산 시간을 줄일 수 있다. 제안하는 기법은 MATLAB으로 구현된 교통 시뮬레이터를 통하여 검증하였으며, 기존 방법에 비해 제안하는 기법을 사용하는 센서 네트워크에서 연산에 소요되는 시간이 감소하는 것을 확인하였다.

Keywords

References

  1. D. Feng, C. Jiang, G. Lim, L. J. Cimini, G. Feng, and G. Y. Li, "A survey of energy-efficient wireless communications," IEEE Communications Surveys & Tutorials, vol. 15, no. 1, pp. 167-178, 2013. https://doi.org/10.1109/SURV.2012.020212.00049
  2. R. Salarifard, S. Bayat-Sarmadi, and H. Mosanaei-Boorani, "A Low-Latency and Low-Complexity Point-Multiplication in ECC," IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 65, no. 9, pp. 2869-2877, 2018. https://doi.org/10.1109/TCSI.2018.2801118
  3. H. Kirti and R. Keyur, "Energy-Efficient Constant Gain Kalman Filter Based Tracking in Wireless Sensor Network," Wireless Communications and Mobile Computing, Apr. 2017.
  4. J. Kwon and D. Park, "Implementation of Computation-Efficient Sensor Network for Kalman Filter-based Intelligent Position-Aware Application," International Conference on Artificial Intelligence in Information and Communication (ICAIIC), Fukuoka, Japan, pp. 565-568, 2020.
  5. S. Kim, J. Cho, and D. Park, "Moving-Target Position Estimation Using GPU-Based Particle Filter for IoT Sensing Applications," Applied Sciences, vol. 7, no. 11, 2017.
  6. K. Ramya, K. P. Kumar, and V. S. Rao, "A survey on target tracking techniques in wireless sensor networks," International Journal of Computer Science & Engineering Survey, vol. 3, no. 4, pp. 93-108, 2012. https://doi.org/10.5121/ijcses.2012.3408
  7. R. E. Kalman, "A new approach to linear filtering and prediction problems," Journal of Basic Engineering, vol. 82, no. 1, pp. 35-45, 1960. https://doi.org/10.1115/1.3662552
  8. M. Raitoharju and R. Piche, "On computational complexity reduction methods for kalman filter extensions," IEEE Aerospace and Electronic Systems Magazine, vol. 34, no. 10, pp. 2-19, Oct. 2019. https://doi.org/10.1109/MAES.2019.2927898
  9. E. Gravelle, "traffic-simulator," 2016. [Internet]. Available: https://github.com/evangravelle/traffic-simulator.