DOI QR코드

DOI QR Code

A Data Ferrying-Based Virtual Full-Duplex Relaying Scheme with Two UAVs

두 UAV를 활용하는 데이터 페리 기반의 가상 전이중 중계전송 기법

  • Woo, Dong Hyuck (Department of Computer Engineering, Kwangwoon University) ;
  • Hwang, Ho Young (School of Computer and Information Engineering, Kwangwoon University)
  • Received : 2020.09.08
  • Accepted : 2020.10.06
  • Published : 2020.12.31

Abstract

In this paper, we propose a virtual full-duplex relaying scheme based on data ferrying using two unmanned aerial vehicles (UAVs). By utilizing high mobility of two UAVs, the proposed relaying scheme can make each UAV communicate with a source node or a destination node when the UAV is near the source node or the destination node. The proposed relaying scheme can overcome the performance limitations of the half-duplex relaying and the implementation constraints of the full-duplex relaying. In addition, we propose an algorithm to shift the center point of two UAVs' trajectory with consideration of inter-relay interference (IRI). We show the simulation results of our proposed trajectory's center point shift algorithm. From the simulation results, it is shown that our proposed relaying scheme can achieve higher end-to-end spectral efficiency (SE) than the conventional static relaying scheme.

본 논문에서는 2개의 UAV(Unmanned Aerial Vehicle)를 중계기로 활용하는 데이터 페리 기반의 가상 전이중 중계전송 기법을 제안한다. 제안하는 기법은 2개의 UAV의 높은 이동성을 활용하여 데이터 페리 기반으로 통신하고자하는 대상과의 거리를 좁힌 후 송수신을 진행한다. 또한, 제안하는 기법은 가상 전이중 중계전송을 통해 반이중 중계전송의 성능 제약 및 전이중 중계전송의 구현 제약을 극복할 수 있다. 또한, IRI(Inter-Relay Interference)에 의한 성능 제약을 완화하기 위해 2개의 UAV에 대한 이동경로의 중심점을 조절하는 알고리즘도 제안한다. 시뮬레이션을 통해 제안하는 중심점 조절 알고리즘에 의한 중심점 이동 결과를 보인다. 제안하는 기법의 성능 평가를 진행한 결과, 기존의 고정된 중계기를 활용한 중계전송 방식에 비해 제안하는 중계전송 기법에서 더 높은 시스템 종단 간 평균 SE(Spectral Efficiency) 성능이 나타났다.

Keywords

References

  1. Y. Liang and V. V. Veeravalli, "Cooperative relay broadcast channels," IEEE Transactions on Information Theory, vol. 53, no. 3, pp. 900-928, Mar. 2007. https://doi.org/10.1109/TIT.2006.890726
  2. S. S. Ikki and M. H. Ahmed, "Exact error probability and channel capacity of the best-relay cooperative-diversity networks," IEEE Signal Processing Letters, vol. 16, no. 12, pp. 1051-1054, Dec. 2009. https://doi.org/10.1109/LSP.2009.2030094
  3. S. Hong and G. Caire, "Virtual full-duplex relaying with half-duplex relays," IEEE Transactions on Information Theory, vol. 61, no. 9, pp. 4700-4720, Sep. 2015. https://doi.org/10.1109/TIT.2015.2453942
  4. W. Wang, K. C. Teh, and K. H. Li, "Relay selection for secure successive AF relaying networks with untrusted nodes," IEEE Transactions on Information Forensics and Security, vol. 11, no. 11, pp. 2466-2476, Nov. 2016. https://doi.org/10.1109/TIFS.2016.2584006
  5. J. Wei, J. Wei, S. Hu, and W. Chen, "Successive decodeand-forward relaying with privacy-aware interference Suppression," IEEE Access, vol. 8, pp. 95793-95806, Apr. 2020. https://doi.org/10.1109/access.2020.2989503
  6. B. Rankov and A. Wittneben, "Spectral efficient protocols for half-duplex fading relay channels," IEEE Journal on Selected Areas in Communications, vol. 25, no. 2, pp. 379-389, Feb. 2007. https://doi.org/10.1109/JSAC.2007.070213
  7. A. Ikhlef, J. Kim, and R. Schober, "Mimicking full-duplex relaying using half-duplex relays with buffers," IEEE Transactions on Vehicular Technology, vol. 61, no. 7, pp. 3025-3037, Sep. 2012. https://doi.org/10.1109/TVT.2012.2201189
  8. N. Nomikos, D. Vouyioukas, T. Charalambous, I. Krikidis, P. Makris, D. N. Skoutas, M. Johansson, and C. Skianis, "Joint relay-pair selection for buffer-aided successive opportunistic relaying," Transactions on Emerging Telecommunications Technologies, vol. 25, no. 8, pp. 823-834, Nov. 2013. https://doi.org/10.1002/ett.2718
  9. Q. Y. Liau, C. Y. Leow, and Z. Ding, "Physical Layer Security Using Two-Path Successive Relaying," Sensors, vol. 16, no. 6, pp. 846, Jun. 2016. https://doi.org/10.3390/s16060846
  10. N. Nomikos and D. Vouyioukas, "A successive opportunistic relaying protocol with inter-relay interference mitigation," in Proceeding of the 8th International Wireless Communications and Mobile Computing Conference, pp. 228-233, Aug. 2012.
  11. N. Nomikos, T. Charalambous, I. Krikidis, D. N. Skoutas, D. Vouyioukas, and M. Johansson, "A buffer-aided successive opportunistic relaying selection scheme with power adaptation and inter-relay interference cancellation for cooperative diversity systems," IEEE Transactions on Communications, vol. 63, no. 5, pp. 1623-1634, May. 2015. https://doi.org/10.1109/TCOMM.2015.2416234
  12. Y. Zeng, R. Zhang, and T. J. Lim, "Wireless communications with unmanned aerial vehicles: Opportunities and challenges," IEEE Communications Magazine, vol. 54, no. 5, pp. 36-42, May. 2016. https://doi.org/10.1109/MCOM.2016.7470933
  13. C. Cheng, P. Hsiao, H. Kung, and D. Vlah, "Maximizing throughput of UAV-relaying networks with the load-carry-and-deliver paradigm," in Proceeding of the IEEE Wireless Communications and Networking Conference, pp. 4417-4424, Mar. 2007.
  14. J. Zhang, Y. Zeng, and R. Zhang, "Spectrum and energy efficiency maximization in UAV-enabled mobile relaying," in Proceeding of the IEEE International Conference on Communications, pp. 1-6, May. 2017.
  15. L. Xiao, Y. Xu, D. Yang, and Y. Zeng, "Secrecy energy efficiency maximization for UAV-enabled mobile relaying," IEEE Transactions on Green Communications and Networking, vol. 4, no. 1, pp. 180-193, Mar. 2020. https://doi.org/10.1109/TGCN.2019.2949802
  16. N. Qi, M. Wang, W. Wang, T. A. Tsiftsis, R. Yao, and G. Yang, "Energy efficient full-duplex UAV relaying networks under load-carry-and-delivery scheme," IEEE Access, vol. 8, pp. 74349-74358, Apr. 2020. https://doi.org/10.1109/access.2020.2986349
  17. B. C. Karhoff, J. I. Limb, S. W. Oravsky, and A. D. Shephard, "Eyes in the domestic sky: An assessment of sense and avoid technology for the army's warrior unmanned aerial vehicle," in Proceeding of the IEEE Systems and Information Engineering Design Symposium, pp. 36-42, Apr. 2006.
  18. M. Erdelj, M. Krol, and E. Natalizio, "Wireless sensor networks and multi-UAV systems for natural disaster management," Computer Networks, vol. 124, pp. 72-86, Jun. 2017. https://doi.org/10.1016/j.comnet.2017.05.021
  19. X. Jiang, Z. Yin, Z. Wu, Z. Yang, and J. Sun, "Outage probability optimization for UAV-enabled wireless relay networks in fading channels," Physical Communication, vol. 33, pp. 35-45, Apr. 2019. https://doi.org/10.1016/j.phycom.2018.12.013