초록
현대사회에서 CCTV, 블랙박스 등 다양한 영상기기로 편리함을 도모한다. 하지만 야간에서 촬영된 영상이나 영상 신호가 송, 수신되는 과정에서 잡음이 빈번하게 발생한다. 이러한 잡음을 제거하지 않으면 영상의 식별이 어렵다는 문제점이 발생한다. 따라서 영상 정보에서 영상의 잡음 제거는 필수불가결한 단계이다. 영상 잡음 중 대표적인 임펄스 잡음으로 Salt and Pepper 잡음이 있다. 잡음을 제거하기 위한 방법으로 선행연구가 진행되어져 왔고 그중 대표적인 방법으로 CWMF, MMF, A-TMF 등이 있다. 이러한 필터들은 공통적으로 저밀도 잡음 영역에서는 우수한 성능을 보이지만 고밀도 잡음 영역에서 잡음 제거 성능이 다소 부족하다는 단점이 있다. 따라서 제안한 알고리즘은 히스토그램 그래프의 변곡점을 이용하여 영역을 나누어 특이점을 제거하고, 히스토그램 분포를 이용한 가중치 필터를 제안한다. 객관적인 판단을 위해 PSNR을 이용하였다.
In modern society, various video devices such as CCTV and black boxes are used for convenience. However, noise is frequently generated in the process of transmitting and receiving video images and video signals photographed at night. If such noise is not eliminated, the problem that the image is difficult to identify is generated. Accordingly, noise elimination of images in the image information is an indispensable step. Salt and Pepper noises are typical impulse noises among image noises. Previous research has been carried out as a method for eliminating noise, and CWMF, MMF and A-TMF are typical methods. In common, such a filter exhibits excellent performance in a low-density noise area, but a disadvantage is that noise elimination performance in a high-density noise area is somewhat insufficient. Accordingly, the proposed algorithm uses the inflection point of the histogram graph to separate areas and remove singular points, and proposes a weighting filter utilizing histogram distribution. PSNR was used for objective judgment.