DOI QR코드

DOI QR Code

CERTAIN GEOMETRIC PROPERTIES OF MODIFIED LOMMEL FUNCTIONS

  • Din, Muhey U (Department of Mathematics, Government Post Graduate Islamia College Faisalabad) ;
  • Yalcin, Sibel (Department of Mathematics, Faculty of Arts and Science, Bursa Uludag University)
  • Received : 2020.04.18
  • Accepted : 2020.10.21
  • Published : 2020.12.25

Abstract

In this article, we find some sufficient conditions under which the modified Lommel function is close-to-convex with respect to - log(1 - z) and ${\frac{1}{2}}\;{\log}\;\({\frac{1+z}{1-z}}\)$. Starlikeness, convexity and uniformly close-to-convexity of the modified Lommel function are also discussed. Some results related to the H. Silverman are also the part of our investigation.

Keywords

References

  1. A. Baricz, Generalized Bessel Functions of the First Kind. Ph.D. thesis, Babes- Bolyai University, Cluj-Napoca, 2008.
  2. A. Baricz, Geometric properties of generalized Bessel functions, Publ. Math. Debrecen, 73 (2008), 155-178.
  3. J. H. Choi, Y. C. Kim and H. M. Srivastava, Convex and starlike generalized HypergeometricFunctions associated with the Hardy spaces, Com. Var., 31(1996), 345-355.
  4. M. U. Din, M. Raza, S. Hussain, and M. Darus, Certain geometric properties of generalized Dini Functions, Journal of Function Spaces, 2018(2018), Article ID 2684023, 9 pages.
  5. L. Fejer, Untersuchungen uber Potenzreihen mit mehrfach monotoner Koeffizientenfolge. Acta Literarum Sci. 8(1936), 89-115.
  6. P. T. Mocanu, Some starlike conditions for analytic functions, Rev Roumaine Math Pures Appl., 33(1988),117-124.
  7. S. S. Miller, P. T Mocanu, Univalence of Gaussian and confluent hypergeometric functions, Proc. Amer. Math. Soc., 110(2)(1990), 333-342. https://doi.org/10.2307/2048075
  8. T. H. MacGregor. The radius of univalence of certain analytic functions II. Proc Amer Math Soc. 14(1963), 521-524. https://doi.org/10.1090/S0002-9939-1963-0148892-5
  9. P. T. Mocanu. Some starlike conditions for analytic functions. Rev Roumaine Math Pures Appl. 33(1988), 117-124.
  10. N. Mustafa,. Geometric Properties of Normalized Wright Functions, Math. Comput. Appl., 21(2016) Art. 14, 10 pp.
  11. J. K. Prajapat, Certain geometric properties of the Wright function, Integ. Trans. Spec Func., 26, 3(2015), 203-212. https://doi.org/10.1080/10652469.2014.983502
  12. M. Raza and M. U Din, Close-to-Convexity of q-Mittag-Leffler Functions, C. R. Acad. Bulg. Sci., 71(12)(2018), 1581-1591
  13. M. Raza, M. U. Din & S. N. Malik. Certain geometric properties of normalized Wright functions. J. Funct. Spaces 2016(2016), Article ID 1896154, 8 pp.
  14. H. Orhan and N. Yagmur, Geometric properties of generalized Struve functions, An. Stiint. Univ. Al. I. Cuza Iasi. Mat., 63(2) (2017), 229-244.
  15. S. Owa, M. Nunokawa, H. Saitoh and H.M. Srivastava, Close-to-convexity, starlikeness, and convexity of certain analytic functions, Appl. Math. Lett., 15(2002), 63-69. https://doi.org/10.1016/S0893-9659(01)00094-5
  16. V. Pescar, A new generalization of Ahlfors's and Becker's criterion of univalence, Bull. Malaysian Math. Soc.(Second Series), 19(1996), 53-54.
  17. H. Silverman, Starlike and convexity properties for hypergeometric functions. J. Math. Anal. Appl. 172 (1993), 574-581. https://doi.org/10.1006/jmaa.1993.1044
  18. H. Silverman, Univalent functions with negative coefficients. Proc. Amer. Math. Soc. 51(1975), 109-116. https://doi.org/10.1090/S0002-9939-1975-0369678-0
  19. V. Ravichandran, On uniformly convex functions. Ganita, 53(2)(2002), 117-124.
  20. S. Ozaki. On the theory of multivalent functions, Sci. Rep. Tokyo Bunrika Daigaku, 2 (1935), 167-188.
  21. H. Orhan & N. Yagmur. Geometric properties of generalized Struve functions. Annals of the Alexandru Ioan Cuza University-Mathematics. (2014).