References
- A. Baricz, Generalized Bessel Functions of the First Kind. Ph.D. thesis, Babes- Bolyai University, Cluj-Napoca, 2008.
- A. Baricz, Geometric properties of generalized Bessel functions, Publ. Math. Debrecen, 73 (2008), 155-178.
- J. H. Choi, Y. C. Kim and H. M. Srivastava, Convex and starlike generalized HypergeometricFunctions associated with the Hardy spaces, Com. Var., 31(1996), 345-355.
- M. U. Din, M. Raza, S. Hussain, and M. Darus, Certain geometric properties of generalized Dini Functions, Journal of Function Spaces, 2018(2018), Article ID 2684023, 9 pages.
- L. Fejer, Untersuchungen uber Potenzreihen mit mehrfach monotoner Koeffizientenfolge. Acta Literarum Sci. 8(1936), 89-115.
- P. T. Mocanu, Some starlike conditions for analytic functions, Rev Roumaine Math Pures Appl., 33(1988),117-124.
- S. S. Miller, P. T Mocanu, Univalence of Gaussian and confluent hypergeometric functions, Proc. Amer. Math. Soc., 110(2)(1990), 333-342. https://doi.org/10.2307/2048075
- T. H. MacGregor. The radius of univalence of certain analytic functions II. Proc Amer Math Soc. 14(1963), 521-524. https://doi.org/10.1090/S0002-9939-1963-0148892-5
- P. T. Mocanu. Some starlike conditions for analytic functions. Rev Roumaine Math Pures Appl. 33(1988), 117-124.
- N. Mustafa,. Geometric Properties of Normalized Wright Functions, Math. Comput. Appl., 21(2016) Art. 14, 10 pp.
- J. K. Prajapat, Certain geometric properties of the Wright function, Integ. Trans. Spec Func., 26, 3(2015), 203-212. https://doi.org/10.1080/10652469.2014.983502
- M. Raza and M. U Din, Close-to-Convexity of q-Mittag-Leffler Functions, C. R. Acad. Bulg. Sci., 71(12)(2018), 1581-1591
- M. Raza, M. U. Din & S. N. Malik. Certain geometric properties of normalized Wright functions. J. Funct. Spaces 2016(2016), Article ID 1896154, 8 pp.
- H. Orhan and N. Yagmur, Geometric properties of generalized Struve functions, An. Stiint. Univ. Al. I. Cuza Iasi. Mat., 63(2) (2017), 229-244.
- S. Owa, M. Nunokawa, H. Saitoh and H.M. Srivastava, Close-to-convexity, starlikeness, and convexity of certain analytic functions, Appl. Math. Lett., 15(2002), 63-69. https://doi.org/10.1016/S0893-9659(01)00094-5
- V. Pescar, A new generalization of Ahlfors's and Becker's criterion of univalence, Bull. Malaysian Math. Soc.(Second Series), 19(1996), 53-54.
- H. Silverman, Starlike and convexity properties for hypergeometric functions. J. Math. Anal. Appl. 172 (1993), 574-581. https://doi.org/10.1006/jmaa.1993.1044
- H. Silverman, Univalent functions with negative coefficients. Proc. Amer. Math. Soc. 51(1975), 109-116. https://doi.org/10.1090/S0002-9939-1975-0369678-0
- V. Ravichandran, On uniformly convex functions. Ganita, 53(2)(2002), 117-124.
- S. Ozaki. On the theory of multivalent functions, Sci. Rep. Tokyo Bunrika Daigaku, 2 (1935), 167-188.
- H. Orhan & N. Yagmur. Geometric properties of generalized Struve functions. Annals of the Alexandru Ioan Cuza University-Mathematics. (2014).