References
- R. Adler, A. Konheim and M. McAndrew, Topological entropy, Trans. Amer. Math. Soc, 114 (1965), 309-319. https://doi.org/10.1090/S0002-9947-1965-0175106-9
- AlsedA, LluAs, J. Llibre, and M. Misiurewicz, Combinatorial dynamics and entropy in dimension one, World Scientific Publishing Company (2000).
- L. Alsed'a, S. Kolyada, J. Llibre and L. Snoha, Axiomatic Definition of the Topological Entropy on the Interval, Aequationes Math 65, 1-2 (2003), 113-132. https://doi.org/10.1007/s000100300008
- M.F. Barnsley and A. Vince, The Conley attractor of an iterated function system, Bull. Aust. Math. Soc, 88 (2013), 267-279. https://doi.org/10.1017/S0004972713000348
- J. Baez, classical Mechanics, Lecture, 14 (February 26, 2008).
- Berryman and A. Alan, The orgins and evolution of predator-prey theory, Ecology, 73.5 (1992), 1530-1535. https://doi.org/10.2307/1940005
- R. Bowen, Entropy for group endomorphism and homogeneous space, Trans. Amer. Math. Soc, 153 (1971), 401-414. https://doi.org/10.2307/1995565
- Ch. Corda, M. Fatehi Nia, M. R. Molaei and Y. Sayyari, Entropy of iterated function systems and their relations with black holes and bohr-like black holes entropies, Entropy, 20 (2018), 56-72. https://doi.org/10.3390/e20010056
- Cuomo, M. Kevin and Alan V. Oppenheim, Chaotic signals and systems for communications, IEEE International Conference on Acoustics, (1993).
- X. Dai, Z. Zhou and X. Geng., Some Relations between Hausdorff-dimensions and Entropies, J. Sci. China Ser. A, 41 (1998), 1068-1075. https://doi.org/10.1007/BF02871841
- E. I. Dinaburg, On the Relations Among Various Entropy Characteristics of Dynamical Systems, Math. USSR Izv, 5 (1971), 337-378. https://doi.org/10.1070/IM1971v005n02ABEH001050
- O. Garasym, J. P. Lozi, and R. Lozi, How useful randomness for cryptography can emerge from multicore-implemented complex networks of chaotic maps. J. Difference Equ, Appl, 23 (2017), 821-859. https://doi.org/10.1080/10236198.2017.1287176
- T. N. T. Goodman, Z. Jinlian and H. Lianfa, Relating Topological Entropy and Measure Entropy, Bull. Lond. Math, 43 (1971), 176-180.
- S. Ito, An Estimate from above for the Entropy and the Topological Entropy of a C1-diffeomorphism, Proc. Japan Acad, 46 (1970), 226-230. https://doi.org/10.3792/pja/1195520395
- S. Ito, On the Topological Entropy of a Dynamical System, Proc. Japan Acad, 4 (1969), 838-840. https://doi.org/10.3792/pja/1195520543
- Khalil. H, Nonlinear control, New York Pearson, (2015).
- M. J. Lee, Introduction to smooth manifolds, GTM, 218 (2002).
- M. Misiurewicz, W. Szlenk, Entropy of Piecewise Monotone Mappings, Asterisque, 50 (1978), 299-310.
- Nitecki and H. Zbigniew, Topological entropy and the preimage structure of maps, Real Anal. Exchange, 29 (2003/04), 9-41. https://doi.org/10.14321/realanalexch.29.1.0009
- Ogata, Katsuhiko, and Yanjuan Yang, Modern control engineering, Prentice-Hall(2002).
- M. Patrao, Entropy and its variational principle for noncompact metric space, Ergodic Theory and Dynamical Systems, 30 (2010), 1529-1542. https://doi.org/10.1017/S0143385709000674
- Thomson, William, Theory of vibration with applications, CrC Press. (2018).
- V. Volterra, Theory of functionals and of integral and integro-differential equations, Courier Corporation, 2005.
- Y. Zhu, Z. Jinlian and H. Lianfa , Topological entropy of a sequence of monotone maps on circles, J. Korean Math. Soc. 43 (2006), 373-382. https://doi.org/10.4134/JKMS.2006.43.2.373