Acknowledgement
This work was supported by National Science Foundation of China (NSFC, grant number: 51778338) and the 7th Framework Program for Research of European Commission (grant number: 612665).
References
- Au, F.T.K. and Du, J.S. (2004), "Prediction of ultimate stress in un-bonded prestressed tendons", Mag. Concrete Res., 56(1), 1-11. https://doi.org/10.1680/macr.2004.56.1.1.
- Abuel-Naga, H.M., Bergado, D.T. and Bouazza, A. (2007a), "Thermally induced volume change and excess pore water pressure of soft Bangkok clay", Eng. Geol., 89(1-2), 144-154. https://doi.org/10.1016/j.enggeo.2006.10.002.
- Abuel-Naga, H.M., Bergado, D.T., Bouazza, A. and Ramana, G.V. (2007b), "Volume change behaviour of saturated clays under drained heating conditions: Experimental results and constitutive modeling", Can. Geotech. J., 44(8), 942-956. https://doi.org/10.1139/t07-031.
- Abuel-Naga, H.M., Bergado, D.T., Ramana, G.V., Grino, L., Rujivipat, P. and Thet, Y. (2006), "Experimental evaluation of engineering behavior of soft Bangkok clay under elevated temperature", J. Geotech. Geoenviron. Eng., 132(7), 902-910. https://doi.org/10.1061/(ASCE)1090-0241(2006)132:7(902).
- Bai, B. and Shi, X. (2017), "Experimental study on the consolidation of saturated silty clay subjected to cyclic thermal loading", Geomech. Eng., 12(4), 707-721. http://doi.org/10.12989/gae.2017.12.4.707.
- Baldi, G., Hueckel, T. and Pellegrini, R. (1988), "Thermal volume changes of the mineral-water system in low-porosity clay soils", Can. Geotech. J., 25(4), 807-825. https://doi.org/10.1139/t88-089.
- Brandl, H. (2006), "Energy foundations and other thermo-active ground structures", Geotechnique, 56(2), 81-122. https://doi.org/10.1680/geot.2006.56.2.81.
- Cekerevac, C. and Laloui, L. (2004), "Experimental study of thermal effects on the mechanical behaviour of a clay", Int. J. Numer. Anal. Meth. Geomech., 28(3), 209-228. https://doi.org/10.1002/nag.332.
- Cui, W., Tsiampousi, A., Potts, D.M., Gawecka, K.A. and Zdravkovic, L. (2020), "Numerical modeling of time-dependent thermally induced excess pore fluid pressures in a saturated soil", J. Geotech. Geoenviron. Eng., 146(4), 04020007. https://doi.org/10.1061/(ASCE)GT.1943-5606.0002218.
- Cui, Y.J., Sultan, N. and Delage, P. (2000), "A thermomechanical model for clays", Can. Geotech. J., 37(3), 607-620. https://doi.org/10.1139/t99-111.
- Derjaguin, B.V., Churaev, N.V. and Muller, V.M. (1987), Surface Forces, Plenum Publishing Corporation, New York, U.S.A.
- Di Donna, A. and Laloui, L. (2015a), "Response of soil subjected to thermal cyclic loading: Experimental and constitutive study", Eng. Geol., 190, 65-76. https://doi.org/10.1016/j.enggeo.2015.03.003.
- Di Donna, A. and Laloui, L. (2015b), "Numerical analysis of the geotechnical behaviour of energy piles", Int. J. Numer. Anal. Meth. Geomech., 39(8), 861-888. https://doi.org/10.1002/nag.2341.
- Garcia-Garcia, S., Jonsson, M. and Wold, S. (2006), "Temperature effect on the stability of bentonite colloids in water", J. Colloid Interf. Sci., 298(2), 694-705. https://doi.org/10.1016/j.jcis.2006.01.018.
- Guvanasen, V. and Chan, T. (2000), "A three-dimensional numerical model for thermohydromechanical deformation with hysteresis in a fractured rock mass", Int. J. Rock Mech. Min. Sci., 37(1-2), 89-106. https://doi.org/10.1016/S1365-1609(99)00095-7.
- Hiebl, M. and Maksymiw, R. (1991), "Anomalous temperature dependence of the thermal expansion of proteins", Biopolymers, 31(2), 161-167. https://doi.org/10.1002/bip.360310204.
- Hueckel, T. and Borsetto, M. (1990), "Thermoplasticity of saturaed clays: Experimentals constitutive study", J. Geotech. Eng., 116(12), 1778-1796. https://doi.org/10.1061/(ASCE)0733-9410(1990)116:12(1778).
- Hueckel, T. and Pellegrini, R. (1992), "Effective stress and water-pressure in saturated clays during heating-cooling cycles", Can. Geotech. J., 29(6), 1095-1102. https://doi.org/10.1139/t92-126.
- Jiang, Y. and Liu, M. (2007), "From elasticity to hypoplasticity: Dynamics of granular solids", Phys. Rev. Lett., 99(10), 105501. https://doi.org/10.1103/PhysRevLett.99.105501.
- Jiang, Y. and Liu, M. (2009), "Granular solid hydrodynamics", Granul. Matter, 11(3), 139-156. https://doi.org/10.1007/s10035-009-0137-3.
- Johnson, K.L. (1987), Contact Mechanics, Cambridge University Press, Cambridge, U.K.
- Laloui, L. and Francois, B. (2009), "ACMEG-T: Soil thermoplasticity model", J. Eng. Mech., 135(9), 932-944. https://doi.org/10.1061/(ASCE)EM.1943-7889.0000011.
- Li, C., Kong, G., Liu, H. and Abuel-Naga, H. (2019), "Effect of temperature on behaviour of red clay-structure interface", Can. Geotech. J., 56(1), 126-134. https://doi.org/10.1139/cgj-2017-0310.
- Li, H., Long, J., Xu, Z. and Masliyah, J.H. (2007), "Flocculation of kaolinite clay suspensions using a temperature-sensitive polymer", AIChE J., 53(2), 479-488. https://doi.org/10.1002/aic.11073.
- Li, Y., Dijkstra, J. and Karstunen, M. (2018), "Thermomechanical creep in sensitive clays", J. Geotech. Geoenviron. Eng., 144(11), 1-11. https://doi.org/10.1061/(ASCE)GT.1943-5606.0001965.
- Mitchell, J.K. (1993), Fundamentals of Soil Behavior, John Wiley, New York, U.S.A.
- Morinl, R. and Silva, A. (1984), "The effects of high pressure and high temperature on some physical properties of ocean sediments", J. Geophys. Res., 89(3), 511-526. https://doi.org/10.1029/JB089iB01p00511.
- Osipov, V.I.V. (2012), "Nanofilms of adsorbed water in clay: Mechanism of formation and properties", Water Resour., 39(7), 709-721. https://doi.org/10.1134/S009780781207010X.
- Plum, R.L. and Esrig, M.I. (1969), "Some temperature effects on soil compressibility and pore water pressures", Proceedings of the 48th Annual Meeting of the Highway Research Board.
- Song, Z., Hao, Y. and Liu, H. (2020), "Analytical study of the thermo-osmosis effect in porothermoelastic responses of saturated porous media under axisymmetric thermal loadings", Comput. Geotech., 123, 103576. https://doi.org/10.1016/j.compgeo.2020.103576.
- Stewart, M.A. and McCartney, J.S. (2014), "Centrifuge modeling of soil-structure interaction in energy foundations", J. Geotech. Geoenviron. Eng., 140(4), 04013044. https://doi.org/10.1061/(ASCE)GT.1943-5606.0001061.
- Sultan, N., Delage, P. and Cui, Y.J. (2002), "Temperature effects on the volume change behaviour of Boom clay", Eng. Geol., 64(2-3), 135-145. https://doi.org/10.1016/S0013-7952(01)00143-0.
- Suvorov, A.P. and Selvadurai, A.P.S. (2009), "THM processes in a fluid-saturated poroelastic geomaterial: Comparison of analytical results and computational estimates", Proceedings of the 3rd CANUS Rock Mechanics Symposium, Toronto, Canada, May.
- Tamizdoust, M.M. and Ghasemi-Fare, O. (2020), "A fully coupled thermo-poro-mechanical finite element analysis to predict the thermal pressurization and thermally induced pore fluid flow in soil media", Comput. Geotech., 117, 103250. https://doi.org/10.1016/j.compgeo.2019.103250.
- Towhata, I., Kuntiwattanaku, P., Seko, I. and Ohishi, K. (1993), "Volume change of clays induced by heating as observed in consolidation tests", Soils Found., 33(4), 170-183. https://doi.org/10.3208/sandf1972.33.4_170.
- Vega, A. and McCartney, J.S. (2015), "Cyclic heating effects on thermal volume change of silt", Environ. Geotech., 2(5), 257-268. https://doi.org/10.1680/envgeo.13.00022.
- Villar, M.V. and Lloret, A. (2004), "Influence of temperature on the hydro-mechanical behaviour of a compacted bentonite", Appl. Clay Sci., 26(1-4), 337-350. https://doi.org/10.1016/j.clay.2003.12.026.
- Wang, H. (2018), "Research on multi-scale and multi-field thermodynamic constitutive model and its finite element implementation for saturated geomaterials", Ph.D. Dissertation, Tsinghua University, Beijing, China.
- Wang, H. and Cheng, X. (2017), "A thermodynamic model for rate-dependent geomaterials", Proceedings of the Advances in Laboratory Testing and Modelling of Soils and Shales (ATMSS), Villars-sur-Ollon, Switzerland, January.
- Xu, S., Scherer, G.W., Mahadevan, T.S. and Garofalini, S.H. (2009), "Thermal expansion of confined water", Langmuir, 25(9), 5076-5083. https://doi.org/10.1021/la804061p.
- Zhang, F. and Kurimoto, Y. (2016), "How to model the contractive behavior of soil in a heating test", Undergr. Sp., 1(1), 30-43. https://doi.org/10.1016/j.undsp.2016.05.001.
- Zhang, Z.C. and Cheng, X.H. (2016), "A thermo-mechanical coupled constitutive model for clay based on extended granular solid hydrodynamics", Comput. Geotech., 80, 373-382. https://doi.org/10.1016/j.compgeo.2016.05.010.
- Zhang, Z. and Cheng, X. (2017), "A fully coupled THM model based on a non-equilibrium thermodynamic approach and its application", Int. J. Numer. Anal. Meth. Geomech., 41(4), 527-554. https://doi.org/10.1002/nag.2569.
- Zhou, C. and Ng, C.W.W. (2018), "A new thermo-mechanical model for structured soil", Geotechnique, 68(12), 1109-1115. https://doi.org/10.1680/jgeot.17.T.031.
- Zhu, Q.Y., Jin, Y.F., Shang, X.Y. and Chen, T. (2019), "A 1D model considering the combined effect of strain-rate and temperature for soft soil", Geomech. Eng., 18(2), 133-140. http://doi.org/10.12989/gae.2019.18.2.133.
- Zymnis, D.M., Whittle, A.J. and Cheng, X. (2015), "TTS model for thermo-mechanical behavior of clay", Proceedings of the XVI European Conference on Soil Mechanics and Geotechnical Engineering, Edinburgh, Scotland, U.K., September.
- Zymnis, D.M., Whittle, A.J. and Cheng, X. (2018a), "Simulation of long-term thermo-mechanical response of clay using an advanced constitutive model", Acta Geotech., 14(2), 295-311. https://doi.org/10.1007/s11440-018-0726-6.
- Zymnis, D.M., Whittle, A.J. and Germaine, J.T. (2018b), "Measurement of temperature-dependent bound water in clays", Geotech. Test. J., 42(1), 232-244. https://doi.org/10.1520/GTJ20170012.