References
- Adhikari, S. (2007), "Uncertainty propagation in linear systems: an exact solution using random matrix theory", Proceedings of 48th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, 1957, Honolulu, April.
- Alibrandi, U. (2014), "A response surface method for stochastic dynamic analysis", Reliability Eng. Syst. Safety, 126, 44-53. https://doi.org/10.1016/j.ress.2014.01.003.
- Barbato, M. and Conte, J.P. (2008), "Spectral characteristics of non-stationary random processes: theory and applications to linear structural models", J. Wind Eng., 23(4), 416-426. https://doi.org/10.1016/j.probengmech.2007.10.009.
- Barbato, M. and Vasta, M. (2010), "Closed-form solutions for the time-variant spectral characteristics of non-stationary random processes", Probabilistic Eng. Mech., 25(1), 9-17. https://doi.org/10.1016/j.probengmech.2009.05.002.
- Bucher, C.G. and Schueller, G.I. (1991), "Non-Gaussian response of linear systems", Struct. Dynam., 103-127. https://doi.org/10.1007/978-3-642-88298-2_6.
- Calatayud, J., Cortes, J. C., and Jornet, M. (2018a), "On the approximation of the probability density function of the randomized heat equation", arXiv preprint arXiv:1802.04188.
- Calatayud, J., Cortes, J. C., and Jornet, M. (2018b), "The damped pendulum random differential equation: A comprehensive stochastic analysis via the computation of the probability density function", Physica A, 512, 261-279. https://doi.org/10.1016/j.physa.2018.08.024.
- Chen, J.B. and Li, J. (2018), "The extreme value distribution and dynamic reliability analysis of nonlinear structures with uncertain parameters", Struct. Safety, 29(2), 77-93. https://doi.org/10.1016/j.strusafe.2006.02.002.
- Conte, J.P. and Peng, B.F. (1996), "An explicit closed-form solution for linear systems subjected to nonstationary random excitation", Probabilistic Eng. Mech., 11(1), 37-50. https://doi.org/10.1016/0266-8920(95)00026-7.
- Di Paola, M. and Falsone, G. (1994), "Non-Linear Oscillators Under Parametric and External Poisson Pulses", J. Nonlinear Dynam., 5(3), 337-352. https://doi.org/10.1007/BF00045341.
- Di Paola, M. and Falsone, G. (1997a), "Higher Order Statistics of the Response of MDOF Linear Systems Excited by Linearly Parametric White Noises and External Excitations", Probabilistic Eng. Mech., 12(3), 179-188. https://doi.org/10.1016/S0266-8920(96)00041-0.
- Di Paola, M. and Falsone, G. (1997b), "Higher Order Statistics of the Response of MDOF Systems under Polynomials of Filtered Normal White Noises", Probabilistic Eng. Mech., 12(3), 189-196. https://doi.org/10.1016/S0266-8920(96)00038-0.
- Di Paola, M., Falsone, G. and Pirrotta, A. (1992), "Stochastic Response Analysis of Nonlinear Systems under Gaussian Inputs", Probabilistic Eng. Mech., 7(1), 15-21. https://doi.org/10.1016/0266-8920(92)90004-2.
- Falsone, G. (1994), "Cumulants and Correlations for Linear Systems under Non-Stationary Delta-Correlated Processes", Probabilistic Eng. Mech., 9(3), 157-165. https://doi.org/10.1016/0266-8920(94)90001-9.
- Falsone, G. (2005), "An extension of the Kazakov relationship for non-Gaussian random variables and its use in the non-linear stochastic dynamics", Probabilistic Eng. Mech., 20(1), 45-56. https://doi.org/10.1016/j.probengmech.2004.06.001.
- Falsone, G. and Laudani, R. (2018), "A probability transformation method (PTM) for the dynamic stochastic response of structures with non-Gaussian excitations", Eng. Computations, 35(5), 1978-1997. https://doi.org/10.1108/EC-12-2017-0518.
- Falsone, G. and Settineri, D. (2011a), "A method for the random analysis of linear system subjected to non-stationary multi-correlated loads", Probabilistic Eng. Mech., 26(3), 447-453. https://doi.org/10.1016/j.probengmech.2010.11.011.
- Falsone, G. and Settineri, D. (2011b), "New differential equations governing the response cross-correlations of linear systems subjected to coloured loads", J. Sound Vib., 330(2), 2910-2927. https://doi.org/10.1016/j.jsv.2010.12.020.
- Falsone, G. and Settineri, D. (2013a), "Explicit solutions for the response probability density function of linear systems subjected to random static loads", Probabilistic Eng. Mech., 33, 86-94. https://doi.org/10.1016/j.probengmech.2013.03.001.
- Falsone, G. and Settineri, D. (2013b), "Explicit solutions for the response probability density function of nonlinear transformations of static random inputs", Probabilistic Eng. Mech., 33, 79-85. https://doi.org/10.1016/j.probengmech.2013.03.003.
- Gioffre, M. and Gusella, V. (2012), "Numerical analysis of structural systems subjected to non-Gaussian random fields", Meccanica, 37(1-2), 115-128. https://doi.org/10.1023/A:1019666616309.
- Hussein, A. and Selim, M.M. (2015), "Limit analysis of stochastic structures in the framework of the Probability Density Evolution Method", European Phys. J. Plus, 30(12), 249. https://doi.org/10.1016/j.engstruct.2018.01.020.
- Kalogeris, I. and Papadopoulos, V. (2018), "Solution of the stochastic generalized shallow-water wave equation using RVT technique", Eng. Struct., 160, 304-313. https://doi.org/10.1140/epjp/i2015-15249-3.
- Kaminski, M. (2010), "Generalized stochastic perturbation technique in Engineering Computations", Math. Comput. Modelling, 51(3-4), 272-285. https://doi.org/10.1016/j.mcm.2009.08.014.
- Li, J. (2016), "Probability density evolution method: Background, significance and recent developments", Probabilistic Eng. Mech., 44, 111-117. https://doi.org/10.1016/j.probengmech.2015.09.013.
- Li, J. and Chen, J.B. (2008), "The principle of preservation of probability and the generalized density evolution equation", Struct. Safety, 30(1), 65-77. https://doi.org/10.1016/j.strusafe.2006.08.001.
- Li, J. and Chen, J. (2009), Stochastic Dynamics of Structures, John Wiley and Sons, NJ, USA.
- Lin, Y.K. (1967), Probabilistic theory of Structural Dynamics, McGraw Hill, New York, NY, USA.
- Liu, Z. and Liu, Z. (2018), "Random function representation of stationary stochastic vector processes for probability density evolution analysis of wind-induced structures", Mech. Syst. Signal Processing, 106, 511-525. https://doi.org/10.1016/j.ymssp.2018.01.011.
- Lutes, L.D. and Sarkani, S. (2004), Random Vibration Analysis of Structural and Mechanical System, Butterworth-Heinemann, Oxford, United Kingdom.
- Makarios, T. K. (2012), "Evaluating the effective spectral seismic amplification factor on a probabilistic basis", Struct. Eng. Mech., 42(1), 121-129. https://doi.org/10.12989/sem.2012.42.1.121.
- Mamis, K.I., Athanassoulis G.A. and Kapelonis Z.G. (2019), "A systematic path to non-Markovian dynamics: new response probability density function evolution equations under Gaussian coloured noise excitation", Proceedings of the Royal Society A, 475, 2226. https://doi.org/10.1098/rspa.2018.0837.
- Mazelsky, B. (1954), "Extension of power spectral methods of generalized harmonic analysis to determine non-Gaussian probability functions of random input disturbances and output responses linear systems", Aeronaut, 21(3), 145-153. https://doi.org/10.2514/8.2952.
- Meimaris, A.T., Kougioumtzoglou, I.A. and Pantelous A.A (2019), "A closed form approximation and error quantification for the response transition probability density function of a class of stochastic differential equation", Probabilistic Eng. Mech., 54, 87-94. https://doi.org/10.1016/j.probengmech.2017.07.005.
- Morikawa, H. and Kameda, H. (1997), "Stochastic interpolation of earthquake ground motions under spectral uncertainties", Struct. Eng. Mech., 5(56), 839-851. https://doi.org/10.12989/sem.1997.5.6.839.
- Papoulis, A. and Pillai, S.U. (2002), Probability, Random Variables, and Stochastic Processes, (4th Edition) McGraw Hill, New York, NY, USA.
- Pradlwarter, H.J. and Schueller, G.I. (2010), "Local domain Monte Carlo simulation", Struct. Safety, 32(5), 275-280. https://doi.org/10.1016/j.strusafe.2010.03.009.
- Proppe, C., Pradlwarter, H.J. and Schueller G.I. (2003), "Equivalent linearization and Monte Carlo simulation in stochastic dynamics", Probabilistic Eng. Mech., 18(1), 1-15. https://doi.org/10.1016/S0266-8920(02)00037-1.
- Roberts, J.B. and Spanos, P.D. (1991), Random Vibration and Statistical Linearization, Wiley, Chichester, NY, USA.
- Wu, W.F. and Lin, Y.K. (1984), "Cumulant-neglect closure for non-linear oscillators under random parametric and external excitations", J. Non-Linear Mech., 15(5), 910-916. https://doi.org/10.1016/0020-7462(84)90063-5.