DOI QR코드

DOI QR Code

Multi-time probability density functions of the dynamic non-Gaussian response of structures

  • Received : 2019.11.11
  • Accepted : 2020.08.05
  • Published : 2020.12.10

Abstract

In the present work, an approach for the multiple time probabilistic characterization of the response of linear structural systems subjected to random non-Gaussian processes is presented. Its fundamental property is working directly on the multiple time probability density functions of the actions and of the response. This avoids of passing through the evaluation of the response statistical moments at multiple time or correlations, reducing the computational effort in a consistent measure. This approach is the extension to the multiple time case of a previously published dynamic Probability Transformation Method (PTM) working on a single evolution of the response statistics. The application to some simple examples has revealed the efficiency of the method, both in terms of computational effort and in terms of accuracy.

Keywords

References

  1. Adhikari, S. (2007), "Uncertainty propagation in linear systems: an exact solution using random matrix theory", Proceedings of 48th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, 1957, Honolulu, April.
  2. Alibrandi, U. (2014), "A response surface method for stochastic dynamic analysis", Reliability Eng. Syst. Safety, 126, 44-53. https://doi.org/10.1016/j.ress.2014.01.003.
  3. Barbato, M. and Conte, J.P. (2008), "Spectral characteristics of non-stationary random processes: theory and applications to linear structural models", J. Wind Eng., 23(4), 416-426. https://doi.org/10.1016/j.probengmech.2007.10.009.
  4. Barbato, M. and Vasta, M. (2010), "Closed-form solutions for the time-variant spectral characteristics of non-stationary random processes", Probabilistic Eng. Mech., 25(1), 9-17. https://doi.org/10.1016/j.probengmech.2009.05.002.
  5. Bucher, C.G. and Schueller, G.I. (1991), "Non-Gaussian response of linear systems", Struct. Dynam., 103-127. https://doi.org/10.1007/978-3-642-88298-2_6.
  6. Calatayud, J., Cortes, J. C., and Jornet, M. (2018a), "On the approximation of the probability density function of the randomized heat equation", arXiv preprint arXiv:1802.04188.
  7. Calatayud, J., Cortes, J. C., and Jornet, M. (2018b), "The damped pendulum random differential equation: A comprehensive stochastic analysis via the computation of the probability density function", Physica A, 512, 261-279. https://doi.org/10.1016/j.physa.2018.08.024.
  8. Chen, J.B. and Li, J. (2018), "The extreme value distribution and dynamic reliability analysis of nonlinear structures with uncertain parameters", Struct. Safety, 29(2), 77-93. https://doi.org/10.1016/j.strusafe.2006.02.002.
  9. Conte, J.P. and Peng, B.F. (1996), "An explicit closed-form solution for linear systems subjected to nonstationary random excitation", Probabilistic Eng. Mech., 11(1), 37-50. https://doi.org/10.1016/0266-8920(95)00026-7.
  10. Di Paola, M. and Falsone, G. (1994), "Non-Linear Oscillators Under Parametric and External Poisson Pulses", J. Nonlinear Dynam., 5(3), 337-352. https://doi.org/10.1007/BF00045341.
  11. Di Paola, M. and Falsone, G. (1997a), "Higher Order Statistics of the Response of MDOF Linear Systems Excited by Linearly Parametric White Noises and External Excitations", Probabilistic Eng. Mech., 12(3), 179-188. https://doi.org/10.1016/S0266-8920(96)00041-0.
  12. Di Paola, M. and Falsone, G. (1997b), "Higher Order Statistics of the Response of MDOF Systems under Polynomials of Filtered Normal White Noises", Probabilistic Eng. Mech., 12(3), 189-196. https://doi.org/10.1016/S0266-8920(96)00038-0.
  13. Di Paola, M., Falsone, G. and Pirrotta, A. (1992), "Stochastic Response Analysis of Nonlinear Systems under Gaussian Inputs", Probabilistic Eng. Mech., 7(1), 15-21. https://doi.org/10.1016/0266-8920(92)90004-2.
  14. Falsone, G. (1994), "Cumulants and Correlations for Linear Systems under Non-Stationary Delta-Correlated Processes", Probabilistic Eng. Mech., 9(3), 157-165. https://doi.org/10.1016/0266-8920(94)90001-9.
  15. Falsone, G. (2005), "An extension of the Kazakov relationship for non-Gaussian random variables and its use in the non-linear stochastic dynamics", Probabilistic Eng. Mech., 20(1), 45-56. https://doi.org/10.1016/j.probengmech.2004.06.001.
  16. Falsone, G. and Laudani, R. (2018), "A probability transformation method (PTM) for the dynamic stochastic response of structures with non-Gaussian excitations", Eng. Computations, 35(5), 1978-1997. https://doi.org/10.1108/EC-12-2017-0518.
  17. Falsone, G. and Settineri, D. (2011a), "A method for the random analysis of linear system subjected to non-stationary multi-correlated loads", Probabilistic Eng. Mech., 26(3), 447-453. https://doi.org/10.1016/j.probengmech.2010.11.011.
  18. Falsone, G. and Settineri, D. (2011b), "New differential equations governing the response cross-correlations of linear systems subjected to coloured loads", J. Sound Vib., 330(2), 2910-2927. https://doi.org/10.1016/j.jsv.2010.12.020.
  19. Falsone, G. and Settineri, D. (2013a), "Explicit solutions for the response probability density function of linear systems subjected to random static loads", Probabilistic Eng. Mech., 33, 86-94. https://doi.org/10.1016/j.probengmech.2013.03.001.
  20. Falsone, G. and Settineri, D. (2013b), "Explicit solutions for the response probability density function of nonlinear transformations of static random inputs", Probabilistic Eng. Mech., 33, 79-85. https://doi.org/10.1016/j.probengmech.2013.03.003.
  21. Gioffre, M. and Gusella, V. (2012), "Numerical analysis of structural systems subjected to non-Gaussian random fields", Meccanica, 37(1-2), 115-128. https://doi.org/10.1023/A:1019666616309.
  22. Hussein, A. and Selim, M.M. (2015), "Limit analysis of stochastic structures in the framework of the Probability Density Evolution Method", European Phys. J. Plus, 30(12), 249. https://doi.org/10.1016/j.engstruct.2018.01.020.
  23. Kalogeris, I. and Papadopoulos, V. (2018), "Solution of the stochastic generalized shallow-water wave equation using RVT technique", Eng. Struct., 160, 304-313. https://doi.org/10.1140/epjp/i2015-15249-3.
  24. Kaminski, M. (2010), "Generalized stochastic perturbation technique in Engineering Computations", Math. Comput. Modelling, 51(3-4), 272-285. https://doi.org/10.1016/j.mcm.2009.08.014.
  25. Li, J. (2016), "Probability density evolution method: Background, significance and recent developments", Probabilistic Eng. Mech., 44, 111-117. https://doi.org/10.1016/j.probengmech.2015.09.013.
  26. Li, J. and Chen, J.B. (2008), "The principle of preservation of probability and the generalized density evolution equation", Struct. Safety, 30(1), 65-77. https://doi.org/10.1016/j.strusafe.2006.08.001.
  27. Li, J. and Chen, J. (2009), Stochastic Dynamics of Structures, John Wiley and Sons, NJ, USA.
  28. Lin, Y.K. (1967), Probabilistic theory of Structural Dynamics, McGraw Hill, New York, NY, USA.
  29. Liu, Z. and Liu, Z. (2018), "Random function representation of stationary stochastic vector processes for probability density evolution analysis of wind-induced structures", Mech. Syst. Signal Processing, 106, 511-525. https://doi.org/10.1016/j.ymssp.2018.01.011.
  30. Lutes, L.D. and Sarkani, S. (2004), Random Vibration Analysis of Structural and Mechanical System, Butterworth-Heinemann, Oxford, United Kingdom.
  31. Makarios, T. K. (2012), "Evaluating the effective spectral seismic amplification factor on a probabilistic basis", Struct. Eng. Mech., 42(1), 121-129. https://doi.org/10.12989/sem.2012.42.1.121.
  32. Mamis, K.I., Athanassoulis G.A. and Kapelonis Z.G. (2019), "A systematic path to non-Markovian dynamics: new response probability density function evolution equations under Gaussian coloured noise excitation", Proceedings of the Royal Society A, 475, 2226. https://doi.org/10.1098/rspa.2018.0837.
  33. Mazelsky, B. (1954), "Extension of power spectral methods of generalized harmonic analysis to determine non-Gaussian probability functions of random input disturbances and output responses linear systems", Aeronaut, 21(3), 145-153. https://doi.org/10.2514/8.2952.
  34. Meimaris, A.T., Kougioumtzoglou, I.A. and Pantelous A.A (2019), "A closed form approximation and error quantification for the response transition probability density function of a class of stochastic differential equation", Probabilistic Eng. Mech., 54, 87-94. https://doi.org/10.1016/j.probengmech.2017.07.005.
  35. Morikawa, H. and Kameda, H. (1997), "Stochastic interpolation of earthquake ground motions under spectral uncertainties", Struct. Eng. Mech., 5(56), 839-851. https://doi.org/10.12989/sem.1997.5.6.839.
  36. Papoulis, A. and Pillai, S.U. (2002), Probability, Random Variables, and Stochastic Processes, (4th Edition) McGraw Hill, New York, NY, USA.
  37. Pradlwarter, H.J. and Schueller, G.I. (2010), "Local domain Monte Carlo simulation", Struct. Safety, 32(5), 275-280. https://doi.org/10.1016/j.strusafe.2010.03.009.
  38. Proppe, C., Pradlwarter, H.J. and Schueller G.I. (2003), "Equivalent linearization and Monte Carlo simulation in stochastic dynamics", Probabilistic Eng. Mech., 18(1), 1-15. https://doi.org/10.1016/S0266-8920(02)00037-1.
  39. Roberts, J.B. and Spanos, P.D. (1991), Random Vibration and Statistical Linearization, Wiley, Chichester, NY, USA.
  40. Wu, W.F. and Lin, Y.K. (1984), "Cumulant-neglect closure for non-linear oscillators under random parametric and external excitations", J. Non-Linear Mech., 15(5), 910-916. https://doi.org/10.1016/0020-7462(84)90063-5.