Acknowledgement
The authors are thankful to the referee's for their valuable comments and suggestions for the improvement of the paper.
References
- C. S. Bagewadi, G. Ingalahalli and S. R. Ashoka, A study on Ricci solitons in Kenmotsu manifolds, ISRN Geom., (2013), Art. ID 412593, 6 pp.
- A. Bejancu and K. L. Duggal, Real hypersurfaces of indefinite Kaehler manifolds, Int. J. Math. Math. Sci., 16(3)(1993), 545-556. https://doi.org/10.1155/S0161171293000675
- A. M. Blaga, η-Ricci solitons on para-Kenmotsu manifolds, Balkan J. Geom. Appl., 20(2015), 1-13.
- A. M. Blaga, On gradient η-Einstein solitons, Kragujevac J. Math., 42(2)(2018), 229-237. https://doi.org/10.5937/KgJMath1802229B
- A. M. Blaga, S. Y. Perktas, B. L. Acet and F. E. Erdogan, η-Ricci solitons in (ϵ)-almost paracontact metric manifolds, Glas. Mat. Ser. III, 53(73)(2018), 205-220. https://doi.org/10.3336/gm.53.1.14
- D. E. Blair, Contact manifolds in Riemannian geometry, Lecture Note in Mathematics 509, Springer-Verlag Berlin-New York, 1976.
- G. Catino and L. Mazzieri, Gradient Einstein solitons, Nonlinear Anal., 132(2016), 66-94. https://doi.org/10.1016/j.na.2015.10.021
- S. K. Chaubey and R. H. Ojha, On the m-projective curvature tensor of a Kenmotsu manifold, Differ. Geom. Dyn. Syst., 12(2010), 52-60.
- J. T. Cho and M. Kimura, Ricci solitons and real hypersurfaces in a complex space form, Tohoku Math. J., 61(2009), 205-212. https://doi.org/10.2748/tmj/1245849443
- U. C. De and A. Sarkar, On ϵ-Kenmotsu manifold, Hardonic J., 32(2)(2009), 231-242.
- R. S. Hamilton, The Ricci flow on surfaces, Mathematics and general relativity(Santa Cruz. CA, 1986), 237-262, Contemp. Math. 71, Amer. Math. Soc., 1988.
- J. B. Jun, U. C. De and G. Pathak, On Kenmotsu manifolds, J. Korean Math. Soc., 42(3)(2005), 435-445. https://doi.org/10.4134/JKMS.2005.42.3.435
- K. Kenmotsu, A class of almost contact Riemannian manifold, Tohoku Math. J., 24(1972), 93-103. https://doi.org/10.2748/tmj/1178241594
- H. Levy, Symmetric tensors of the second order whose covariant derivatives vanish, Ann. Math., 27(2)(1925), 91-98. https://doi.org/10.2307/1967964
- H. G. Nagaraja and C. R. Premalatha, Ricci solitons in Kenmotsu manifolds, J. Math. Anal., 3(2)(2012), 18-24.
- R. Sharma, Certain results on K-contact and (k, μ)-contact manifolds, J. Geom., 89(1-2)(2008), 138-147. https://doi.org/10.1007/s00022-008-2004-5
- M. D. Siddiqi, η-Einstein solitons in a δ-Lorentzian trans Sasakian manifolds, Mathematical Advances in Pure and Applied Sciences, 1(1)(2018), 27-38.
- M. D. Siddiqi, η-Einstein solitons in an (ε)-Kenmotsu manifolds with a semi-symmetric metric connection, Annales. Univ. Sci. Budapest, 62(2019), 5-24.
- X. Xufeng and C. Xiaoli, Two theorems on ϵ-Sasakian manifolds, Int. J. Math. Math. Sci., 21(2)(1998), 249-254. https://doi.org/10.1155/S0161171298000350