DOI QR코드

DOI QR Code

Effect of Epigallocatechin Gallate on Viability of Kudoa septempunctata

  • Shin, Sang Phil (Department of Marine Life Sciences & Marine Science Institute, Jeju National University) ;
  • Hong, Hyun Ki (Department of Marine Life Science (BK FOUR) and Marine Science Institute, Jeju National University) ;
  • Jin, Chang Nam (Department of Marine Life Sciences & Marine Science Institute, Jeju National University) ;
  • Sohn, Hanchang (Department of Marine Life Sciences & Marine Science Institute, Jeju National University) ;
  • Choi, Kwang Sik (Department of Marine Life Science (BK FOUR) and Marine Science Institute, Jeju National University) ;
  • Lee, Jehee (Department of Marine Life Sciences & Marine Science Institute, Jeju National University)
  • 투고 : 2020.05.05
  • 심사 : 2020.09.12
  • 발행 : 2020.10.31

초록

Kudoa septempunctata have been reported as a causative agent for acute transient gastrointestinal troubles after eating raw olive flounder (Paralichthys olivaceus). It raised public health concerns and quarantine control in several countries. Quantitative evaluation on viability of K. septempunctata is crucial to develop effective chemotherapeutics against it. A cytometry using fluorescent stains was employed to assess effect of three compounds on viability of K. septempunctata. Epigallocatechin gallate reduced markedly viability of K. septempunctata at 0.5 mM or more, and damaged K. septempunctata spores by producing cracks.

키워드

참고문헌

  1. Yokoyama H, Grabner D, Shirakashi S. Transmission biology of the Myxozoa. In Carvalho ED, David GS, Silva RJ eds, Health and Environment in Aquaculture. Rejeka, Croatia. InTech. 2012, pp 3-42.
  2. Yanagida T. Myxosporean emaciation disease. Fish Pathol 2017; 52: 63-67. https://doi.org/10.3147/jsfp.52.63
  3. Redondo MJ, Palenzuela O, Alvarez-Pellitero P. Studies on transmission and life cycle of Enteromyxum scophthalmi (Myxozoa), an enteric parasite of turbot Scophthalmus maximus. Folia Parasitol 2004; 51: 188-198. https://doi.org/10.14411/fp.2004.022
  4. Hoffman GL. Myxobolus cerebralis, a worldwide cause of salmonid whirling disease. J Aquat Anim Health 1990; 2: 30-37. https://doi.org/10.1577/1548-8667(1990)002@@<@@0030:mcawco@@>@@2.3.co;2
  5. Kawai T, Sekizuka T, Yahata Y, Kuroda M, Kumeda Y, Iijima Y, Kamata Y, Sugita-Konishi Y, Ohnishi T. Identification of Kudoa septempunctata as the causative agent of novel food poisoning outbreaks in Japan by consumption of Paralichthys olivaceus in raw fish. Clin Infect Dis 2012; 54: 1046-1052. https://doi.org/10.1093/cid/cir1040
  6. Ohnishi T, Tomaru A, Yoshinari T, Kamata Y, Sugita-Konishi Y. Detection of myxosporean parasites in unidentified food-borne disease associated with consumption of raw fish. Jap J Food Microbiol 2016; 33: 150-154 (in Japanese). https://doi.org/10.5803/jsfm.33.150
  7. Kawase M, Yoshioka A, Hosoya M, Shichiku M. Suspected food-borne disease related to juvenile Pacific bluefin tuna containing Kudoa hexapunctata and evaluation of patient fecal examination. Jap J Food Microbiol 2015; 32: 48-53 (in Japanese). https://doi.org/10.5803/jsfm.32.48
  8. Ohnishi T, Obara T, Arai S, Yoshinari T, Sugita-Konishi Y. Quantitative analysis of Unicapsula seriolae in Greater amberjack associated with unidentified food-borne disease. J Food Hyg Soc Jpn 2018; 59: 24-29 (in Japanese). https://doi.org/10.3358/shokueishi.59.24
  9. Kim WS, Kong KH, Jung SJ, Jung MH, Jeon CH, Kim JH, Oh MJ. A survey of Kudoa septempunctata in olive flounder (Paralichthys olivaceus) hatcheries in the southwestern coast of Korea between 2014 and 2015. J Fish Pathol 2015; 28: 109-112 (in Korean). https://doi.org/10.7847/jfp.2015.28.2.109
  10. Yokoyama H, Funaguma N, Kobayashi S. In vitro inactivation of Kudoa septempunctata spores infecting the muscle of olive flounder Paralichthys olivaceus. Foodborne Pathog Dis 2016; 13: 21-27. https://doi.org/10.1089/fpd.2015.2003
  11. Ahn MJ, Won SH, Kang BJ, Gong P, Yoo EH, Dharaneedharan S, Jang YH. In vitro effect of two commercial anti-coccidial drugs against myxospores of Kudoa septempunctata genotype ST3 (Myxozoa, Multivalvulida). Parasite. 2017; 24: 11. https://doi.org/10.1051/parasite/2017012
  12. Ohnishi T, Furuya A, Arai S, Yoshinari T, Goto K, Hara-Kudo Y. Study of tea and coffee on inactivation of Kudoa septempunctata. J Food Hyg Soc Jpn 2019; 60: 22-25 (in Japanese). https://doi.org/10.3358/shokueishi.60.22
  13. Kato S, Bowman DD. Using flow cytometry to determine the viability of Cryptosporidium parvum oocysts extracted from spiked environmental samples in chambers. Parasitol Res 2002; 88: 326-331. https://doi.org/10.1007/s004360100504
  14. Soudant P, Chu FL, Lund ED. Assessment of the cell viability of cultured Perkinsus marinus (Perkinsea), a parasitic protozoan of the eastern oyster, Crassostrea virginica, using SYBRgreen-propidium iodide double staining and flow cytometry. J Eukaryot Microbiol 2005; 52: 492-499. https://doi.org/10.1111/j.1550-7408.2005.00058.x
  15. Shin SP, Zenke K, Yokoyama H, Yoshinaga T. Factors affecting sporoplasm release in Kudoa septempunctata. Parasitol Res 2015; 114: 795-799. https://doi.org/10.1007/s00436-014-4305-y
  16. Jeon J, Kim JH, Lee CK, Oh CH, Song HJ. The antimicrobial activity of (-)-epigallocatehin-3-gallate and green tea extracts against Pseudomonas aeruginosa and Escherichia coli isolated from skin wounds. Ann Dermatol 2014; 26: 564-569. https://doi.org/10.5021/ad.2014.26.5.564
  17. Steinmann J, Buer J, Pietschmann T, Steinmann E. Anti-infective properties of epigallocatechin-3-gallate (EGCG), a component of green tea. Br J Pharmacol 2013; 168: 1059-1073. https://doi.org/10.1111/bph.12009
  18. Kang J, Park C, Jang Y, Ahn M, Shin T. Lectin histochemistry of Kudoa septempunctata genotype ST3-infected muscle of olive flounder (Paralichthys olivaceus). Parasite 2016; 23: 21. https://doi.org/10.1051/parasite/2016021
  19. Chase JC, Dawson-Coates JA, Haddow JD, Stewart MH, Haines LR, Whitaker DJ, Ken ML, Olafson RW, Pearson TW. Analysis of Kudoa thyrsites (Myxozoa: Myxosporea) spore antigens using monoclonal antibodies. Dis Aquat Organ 2001; 45: 121-129. https://doi.org/10.3354/dao045121
  20. Redondo MJ, Alvarez-Pellitero P. Lectin histochemical detection of terminal carbohydrate residues in the enteric myxozoan Enteromyxum leei parasitizing gilthead seabream Sparus aurata (Pisces: Teleostei): a study using light and transmission electron microscopy. Folia Parasitol 2009; 56: 259-267. https://doi.org/10.14411/fp.2009.030
  21. Zhu F. A review on the application of herbal medicines in the disease control of aquatic animals. Aquaculture 2020; 526: 735422. https://doi.org/10.1016/j.aquaculture.2020.735422
  22. Wang H. Chen Y, Ru G, Xu Y, Lu L. EGCG: Potential application as a protective agent against grass carp reovirus in aquaculture. J Fish Dis 2018; 41: 1259-1267. https://doi.org/10.1111/jfd.12819
  23. Wang Z, Sun BZ, Zhu F. Epigallocatechin-3-gallate inhibit replication of white spot syndrome virus in Scylla paramamosain. Fish Shellfish Immunol 2017; 67: 612-619. https://doi.org/10.1016/j.fsi.2017.06.050
  24. Wang Z, Sun BZ, Zhu F. Epigallocatechin-3-gallate protects Kuruma shrimp Marsupeneaus japonicas from white spot syndrome virus and Vibrio alginolyticus. Fish Shellfish Immunol 2018; 78: 1-9. https://doi.org/10.1016/j.fsi.2018.04.021
  25. Ramachandran B, Jayavelu S, Murhekar K, Rajkumar T. Repeated dose studies with pure Epigallocatechin-3-gallatedemonstrated dose and route dependant hepatotoxicity with associated dyslipidemia. Toxicol Rep 2016; 3: 336-345. https://doi.org/10.1016/j.toxrep.2016.03.001