References
- Ahn, B., Jeong, S., Kim, J., Shao, S., Hong, J., Arndt, R.E.A., 2017. An experimental investigation of artificial supercavitation generated by air injection behind diskshaped cavitators. Int. J. Naval Architect Ocean Eng 9, 227-237. https://doi.org/10.1016/j.ijnaoe.2016.10.006
- Chen, X., Lu, C., Li, J., Chen, Y., 2011. Properties of natural cavitation flows around a 2-d wedge in shallow water. J. Hydrodyn., Ser. B 23, 730-736. https://doi.org/10.1016/S1001-6058(10)60170-9
- Cheng, W., Lu, C., Cao, J., 2011. Study of the influence of water wave on the unstable cavitating flow of a hydrofoil. Chin. J. Hydrodyn. (In Chinese) 6, 763-769.
- Hu, X., Gao, Y., Shi, X., 2017. Numerical study on characteristics of supercavitating flow around the variable-lateral-force cavitator. China Ocean Eng. 31, 123-129. https://doi.org/10.1007/s13344-017-0015-4
- Huang, C., Dang, J., Luo, K., Li, D., Wang, Z., 2017. Influence of Ramjets' water inflow on supercavity shape and cavitator drag characteristic. J. Mar. Sci. Appl. 16, 166-172. https://doi.org/10.1007/s11804-017-1409-7
- Jafarian, A., Pishevar, A., 2016. Numerical simulation of steady supercavitating flows. J. Appl. Fluid Mech. 9, 2981-2992. https://doi.org/10.29252/jafm.09.06.26209
- Javadpour, S.M., Farahat, S., Ajam, H., Salari, M., Hossein Nezhad, A., 2017. Experimental and numerical study of ventilated supercavitation around a cone cavitator. Heat Mass Tran. 53, 1491-1502. https://doi.org/10.1007/s00231-016-1893-3
- Jiang, C., Shuai, Z., Zhang, X., Li, W., Li, F., 2016. Numerical study on the transient behavior of water-entry supercavitating flow around a cylindrical projectile influenced by turbulent drag-reducing additives. Appl. Therm. Eng. 104, 450-460. https://doi.org/10.1016/j.applthermaleng.2016.05.102
- Kadivar, E., Kadivar, E., Javadi, K., Javadpour, S.M., 2017. The investigation of natural super-cavitation flow behind three-dimensional cavitators: full cavitation model. Appl. Math. Model. 45, 165-178. https://doi.org/10.1016/j.apm.2016.12.017
- Karn, A., Arndt, R.E.A., Hong, J., 2015. Dependence of supercavity closure upon flow unsteadiness. Exp. Therm. Fluid Sci. 68, 493-498. https://doi.org/10.1016/j.expthermflusci.2015.06.011
- Kim, H., Lee, H., 2014. A numerical analysis of gravity and free surface effects on a two-dimensional supercavitating flow. J. Soc. Naval Archit.Korea.
- Kulagin, V.A., Moskvichev, V.V., Makhutov, N.A., Markovich, D.M., Shokin, Y.I., 2016. Physical and mathematical modeling in the field of high-velocity hydrodynamics in the experimental base of the Krasnoyarsk hydroelectric plant, 6. Herald of the Russian Academy of Sciences, pp. 454-465.
- Lee, S., Kawakami, E., Karn, A., Arndt, R.E.A., 2016. A comparative study of behaviors of ventilated supercavities between experimental models with different mounting configurations. Fluid Dynam. Res. 48, 45506. https://doi.org/10.1088/0169-5983/48/4/045506
- Li, D., Huang, B., Zhang, M., Wang, G., Liang, T., 2018. Numerical and theoretical investigation of the high-velocity compressible supercavitating flows. Ocean Eng. 156, 446-455. https://doi.org/10.1016/j.oceaneng.2018.03.032
- Logvinovich, G.V., 1969. Hydrodynamics of Flow with Free Boundaries. Naukova Dumka, Kjev.
- Meng, Q., Zhang, Z., Liu, J., 2015. Numerical calculation of supercavitating flows over the disk cavitator of a subsonic underwater projectile. J. Mar. Sci. Appl. 14, 283-289. https://doi.org/10.1007/s11804-015-1317-7
- Mirzaei, M., Eghtesad, M., Alishahi, M.M., 2016. Planing force identification in highvelocity underwater vehicles. J. Vib. Contr. 22, 4176-4191. https://doi.org/10.1177/1077546315571660
- Pendar, M., Roohi, E., 2016. Investigation of cavitation around 3D hemispherical head-form body and conical cavitators using different turbulence and cavitation models. Ocean Eng. 112, 287-306. https://doi.org/10.1016/j.oceaneng.2015.12.010
- Salari, M., Javadpour, S.M., Farahat, S., 2017. Experimental study of fluid flow characteristics around conical cavitators with natural and ventilated cavitations. J. Mar. Sci. Technol. 5, 489-498.
- Savchenko, Y.N., 2001. Experimental Investigation of Supercavitating Motion of Bodies. RTO-AVT and VKI, Brussels, pp. 43-66.
- Shafaghat, R., Hosseinalipour, S.M., Lashgari, I., Vahedgermi, A., 2011. Shape optimization of axisymmetric cavitators in supercavitating flows, using the NSGA II algorithm. Appl. Ocean Res. 33, 193-198. https://doi.org/10.1016/j.apor.2011.03.001
- Shao, S., Karn, A., Ahn, B., Arndt, R.E.A., Hong, J., 2017. A comparative study of natural and ventilated supercavitation across two closed-wall water tunnel facilities. Exp. Therm. Fluid Sci. 88, 519-529. https://doi.org/10.1016/j.expthermflusci.2017.07.005
- Shi, H., Zhou, Y., Jia, H., Zhu, B., 2016. The effects of water depth and length-todiameter ratio on drag coefficient and cavity shape of underwater supercavitating projectiles. Acta Armamentarii 11, 2029-2036.
- Vernengo, G., Bonfiglio, L., Gaggero, S., Brizzolara, S., 2016. Physics-based design by optimization of unconventional supercavitating hydrofoils. J. Ship Res. 60, 187-202. https://doi.org/10.5957/jsr.2016.60.4.187
- Wang, Y., Wu, X., Huang, C., Wu, X., 2016. Unsteady characteristics of cloud cavitating flow near the free surface around an axisymmetric projectile. Int. J. Multiphas. Flow 85, 48-56. https://doi.org/10.1016/j.ijmultiphaseflow.2016.05.013
- Wang, Y., Xu, C., Wu, X., Huang, C., Wu, X., 2017. Ventilated cloud cavitating flow around a blunt body close to the free surface. Phys. Rev. Fluid. 2.
- Wang, W., Wang, C., Du, Y., Li, C., 2018. Simulation study of ventilated supercavity in a periodic gust flow. Acta Armamentarii 1772-1779 (In Chinese). https://doi.org/10.3969/j.issn.1000-1093.2015.09.024
- Yang, D., Xiong, Y.L., Guo, X.F., 2017. Drag reduction of a rapid vehicle in supercavitating flow. Int. J. Naval Architect Ocean Eng 9, 35-44, 2017-01-01. https://doi.org/10.1016/j.ijnaoe.2016.07.003
- Zhao, C., Wang, C., Wei, Y., Zhang, X., 2015. An experimental study on characteristics of cavitation and ballistic of axisymmetric slender body underwater movement. J. Phys. Conf. 656, 12175. https://doi.org/10.1088/1742-6596/656/1/012175