과제정보
The research presented here is supported by the National Natural Science Foundation of China with grant number 51809124.
참고문헌
- Akyildiz, H., Unal, N.E., 2006. Sloshing in a three-dimensional rectangular tank: numerical simulation and experimental validation. Ocean Engineering 33, 2135-2149. https://doi.org/10.1016/j.oceaneng.2005.11.001
- Belakroum, R., 2010. An efficient passive technique for reducing sloshing in rectangular tanks partially filled with liquid. Mech. Res. Commun. 37, 341-346. https://doi.org/10.1016/j.mechrescom.2010.02.003
- Buzhinskii, V.A., 1998. Vortex damping of sloshing in tanks with baffles. J. Appl. Math. Mech. 62, 217-224. https://doi.org/10.1016/S0021-8928(98)00028-8
- Cho, J.R., 2003. Dynamic analysis of baffled fuel-storage tanks using the ALE finite element method. Int. J. Numer. Methods Fluid. 41, 185-208. https://doi.org/10.1002/fld.434
- Firouz-Abadi, R.A., Haddadpou, H., Noorian, M.A., et al., 2008. 3D BEM model for liquid sloshing in baffled tanks. Int. J. Numer. Methods Eng. 76, 1419-1433. https://doi.org/10.1002/nme.2363
- Goudarzi, M.A., Sabbagh-Yazdi, S.R., 2012. Analytical and experimental evaluation on the effectiveness of upper mounted baffles with respect to commonly used baffles. Ocean Engineering 42, 205-217. https://doi.org/10.1016/j.oceaneng.2011.12.005
- Liu, D.M., Lin, P.Z., 2008. A numerical study of three-dimensional liquid sloshing in tanks. J. Comput. Phys. 227, 3921-3939. https://doi.org/10.1016/j.jcp.2007.12.006
- Sames, P.C., Marcouly, D., Schellin, T.E., 2002. Sloshing in rectangular and cylindrical tanks. J. Ship Res. 46, 186-200. https://doi.org/10.5957/jsr.2002.46.3.186
- Shao, J.R., Li, H.Q., Liu, G.R., Liu, M.B., 2012. An improved SPH method for modeling liquid sloshing dynamics. Comput. Struct. 100-101, 18-26. https://doi.org/10.1016/j.compstruc.2012.02.005
- Shao, J.R., Li, Z.R., Liu, M.B., 2015. A comparative study of different baffles on mitigating liquid sloshing in a rectangular tank due to a horizontal excitation. Eng. Compute. 32, 1172-1190. https://doi.org/10.1108/EC-12-2014-0251
- Valentine, D.T., 2005. Numerical investigation of two-dimensional sloshing: nonlinear internal waves. J. Offshore Mech. Arctic Eng. 127, 300-305. https://doi.org/10.1115/1.2073154
- Wang, Wenyuan, 2016. Liquid sloshing in partly-filled laterally-excited cylindrical tanks equipped with multi baffles. Ocean Research 59, 543-563. https://doi.org/10.1016/j.apor.2016.07.009
- Wang, Wenyuan, Guo, Zijian, Yun, Peng, et al., 2016. A numerical study of the effects of the T-shaped baffles on liquid sloshing in horizontal elliptical tanks. Ocean Engineering 111, 543-568. https://doi.org/10.1016/j.oceaneng.2015.11.020
- Wang, Wenyuan, Zang, Quansheng, Wei, Zhijun, et al., 2019. An isogeometric boundary element method for liquid sloshing in the horizontal eccentric annular tanks with multiple porous baffles. Ocean Engineering 189, 106367. https://doi.org/10.1016/j.oceaneng.2019.106367
- Wu, G.X., Ma, Q.W., Taylor, R.E., 1998. Numerical simulation of sloshing waves in a 3D tank based on a finite element method. Appl. Ocean Res. 20, 337-355. https://doi.org/10.1016/S0141-1187(98)00030-3
피인용 문헌
- Experimental and Numerical Study of Stratified Sloshing in a Tank under Horizontal Excitation vol.2021, 2020, https://doi.org/10.1155/2021/6639223
- Fatigue life and effect of sloshing according to the scale ratio of a prismatic LNG tank vol.35, pp.2, 2021, https://doi.org/10.1007/s12206-021-0109-z
- Numerical investigation of sloshing in tank with horivert baffles under resonant excitation using CFD code vol.161, 2020, https://doi.org/10.1016/j.tws.2021.107517
- Investigation on the effects of vertical baffles on liquid sloshing based on a particle method vol.2083, pp.2, 2021, https://doi.org/10.1088/1742-6596/2083/2/022097