References
- Alawneh, S., 2014. Hyper-real-time ice simulation and modeling using GPGPU. Ph.D. thesis. Memorial University of Newfoundland.
- Daley, C. G., 1999. Energy based ice collision forces. In Proceedings of the 15th International Conference on Port and Ocean Engineering under Arctic Conditions (POAC), 2, pp.674-686.
- Daley, C. G., 2000. IACS Unified requirements for polar ships. background notes to design ice loads. Prepared for: IACS ad-hoc group on polar class ships. Transport Canada. Memorial University.
- Daley, C., G., Alawneh, S., Peters, D., & Colbourne, B., 2014. GPU-event-mechanics evaluation of ice impact load statistics. Arctic Technology Conference, 10-12 February 2014, OTC paper number 24645, doi:10.4043/24645-MS.
- Fett, T., & Munz, D., 1997. Stress intensity factors and weight functions. International series on advances in fracture, ISSN 1366-7114. Computational Mechanics Publications Southampton.
- Grape, J. A., & Schulson, E. M., 1992. Effect of confining stress on brittle indentation failure of columnar ice. International Journal of Offshore and Polar Engineering, 2(3).
- Haase, A., Polojavi, A., & Tuhkuri, J., 2010. 3D Discrete numerical modelling of conical structure-ice rubble interaction. IAHR International Symposium on Ice, pp.330-335.
- Hilding, D., Forsberg, J., & Gurtner, A., 2011. Simulation of ice action loads on offshore structures. In Proceedings of the 8th European LS-DYNA Users Conference, Strasbourg.
- IACS, U., 2006. Requirements concerning polar class.
- Ji, S., Li, Z., Li, C., & Shang, J., 2013. Discrete element modeling of ice loads on ship hulls in broken ice fields. Acta Oceanologica Sinica, 32(11), 50-58. https://doi.org/10.1007/s13131-013-0377-2
- Kim, E., Lu, W., Lubbad, R., Loset, S., & Amdahl, J., 2015. Toward a holistic load model for structrures in broken ice. Proceedings -. International Conference on Port and Ocean Engineering under Arctic Conditions, Trondheim, Norway.
- Lau, M., 2006. Discrete element modeling of ship manoeuvring in ice. 18th IAHR International Symposium on Ice, pp. 25-32.
- Li, R., Zhong, Y., & Li, M., 2013. Analytic bending solutions of free rectangular thin plates resting on elastic foundations by a new symplectic superposition method. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Science, 469(2153)(20120681).
- Lindquist, A., 1989. Straightforward method for calculation of ice resistance of ships. POAC'89, Luleaa, Sweden.
- Lu, W., Loset, S., & Lubbad, R., 2012. Ventilation and backfill effect during ice-.structure interactions. The 21st IAHR International Symposium on Ice. Dalian, China, June 11 to 15, 2012
- Lu, W., Lubbad, R., & Loset, S., 2014a. Simulating ice-sloping structure interactions with the cohesive element method. Journal of Offshore Mechanics and Arctic Engineering, 136(3), 031501. https://doi.org/10.1115/1.4026885
- Lu, W., Lubbad, R., Hoyland, K., & Loset, S., 2014b. Physical model and theoretical model study of level ice and wide sloping structure interactions. Cold Regions Science and Technology 101, 40-72. https://doi.org/10.1016/j.coldregions.2014.01.007
- Lu, W., Lubbad, R., & Loset, S., 2015. In-plane fracture of an ice floe: a theoretical study on the splitting failure mode. Cold Regions Science and Technology, 110, 77-101. https://doi.org/10.1016/j.coldregions.2014.11.007
- Lu, W., Lubbad, R., Loset, S., & Kashafutdinov, M., 2016. Fracture of an ice floe: Local out-of-plane flexural failures versus global in-plane splitting failure. Cold Regions Science and Technology, 123, pp.1-13. https://doi.org/10.1016/j.coldregions.2015.11.010
- Lubbad, R., & Loset, S., 2011. A numerical model for real-time simulation of ship-ice interaction. Cold Regions Science and Technology, 65(2), pp.111-127. https://doi.org/10.1016/j.coldregions.2010.09.004
- Nevel, D.E., 1958. The narrow infinite wedge on an elastic foundation. US Army Snow Ice and Permafrost Research Establishment, Corps of Engineers Report No. TR56.
- Nevel, D.E., 1972. The ultimate failure of a floating ice sheet. International Association for Hydraulic Research, Ice Symposium, pp.17-22.
- Popov, Y., Faddeyev, O., Kheisin, D., & Yalovlev, A., 1967. Strength of ships sailing in ice. Sudostroenie Publishing House, Leningrad., pp.223, Technical Translation, U.S. Army Foreign Science and Technology Center, FSTC-HT-23-96-68.
- Sanderson, T.J.O., 1988. Ice mechanics. Risks to offshore structures. Graham and Trotman, London, UK.
- Sawamura, J., Riska, K., Moan, T., 2009. Numerical Simulation of Breaking Patterns in Level Ice at Ship's Bow. In Proceedings of 19th International Offshore and Polar Engineering Conference, Osaka, Japan, pp. 600-607.
- Sawamura, J., Tachibana, T., Tsuchiya, H., Osawa, N., 2010. Numerical Investigation for the Bending Failure of Wedge-Shaped Floating Ice. The 20st IAHR International Symposium on Ice. Lahti, Finland. June 14 to 18, 2010.
- Su, B., Riska, K. & Moan, T., 2010. A numerical method for the prediction of ship performance in level ice. Cold Regions Science and Technology, 60(3), pp.177-188. https://doi.org/10.1016/j.coldregions.2009.11.006
- van den Berg, M., Lubbad, R., Loset, S., 2019. The effect of ice floe shape on the load experienced by vertical- sided structures interacting with a broken ice field. Marine Structures 65, 229-48. https://doi.org/10.1016/j.marstruc.2019.01.011
- Wu, X.R., & Carlsson, J., 1991. Weight functions and stress intensity factor solutions. Pergamon Press.