Image Clustering using Geo-Location Awareness

  • 투고 : 2020.12.21
  • 심사 : 2020.12.23
  • 발행 : 2020.12.31

초록

This paper suggests a method of automatic clustering to search of relevant digital photos using geo-coded information. The provided scheme labels photo images with their corresponding global positioning system coordinates and date/time at the moment of capture, and the labels are used as clustering metadata of the images when they are in the use of retrieval. Experimental results show that geo-location information can improve the accuracy of image retrieval, and the information embedded within the images are effective and precise on the image clustering.

키워드

참고문헌

  1. Amara Tariq, Hassan Foroosh, "T-Clustering: Image clustering by tensor decomposition", International Conference on Image Processing, 2015.
  2. G. Qi, X. Hua, Y. Rui, J. Tang, T. Mei, H. Zhang, "Correlative multi-label video annotation". In ACM MM, pp,17-26, 2007.
  3. H. Jegou, O. Chum. "Negative evidences and co-occurences in image retrieval: The benefit of PCA and whitening", In ECCV, pages 774-787, 2012.
  4. Ramech Jain, "Photo Retrieval: Multimedia's Chance to Solve a Real problem for Real People", IEEE Multimedia, vol.14, issue.3, pp.111-112, July, 2007.
  5. National Geospatial-Intelligence Agency (NGA). Website http://earth-info.nga.mil/gns/html/namefiles.htm.
  6. B.S.Manjunath, J.R.Ohm, V.Vasudevan and A.Yamada, "Color and Texture Descriptors", IEEE Transactions on Circuits and System from Video Technology, vol.11, no.6, pp.703-715, 2001. https://doi.org/10.1109/76.927424
  7. Nikon Technical Note GPS Connection to D1X and D1H, website http://www.nikonusa.com/pdf/GPS.pdf.
  8. Klaus Betke, "The NMEA 0183 Protocol", Aug., 2001, website http://www.nmea.org.
  9. "Exchangeable Image File Format for Digital Still Cameras: EXIF Version 2.2", Japan Electronics and Information Technology Industries Association (JEITI), 2002.
  10. "Photo Metadata 2008 IPTC Core Specification version 1.1", International Press Telecommunications Council, 2008, website http://www.iptc.org.
  11. Vittorio Castelli, Lawrence D. Bergman, Image Database: Search and Retrieval of Digital Imagery, Wiley Inter-Science, 2002.
  12. J. Wang, J. Wang, J. Song, X. Xu, H. Shen, S. Li, "Optimized cartesian k-means", IEEE Trans. Knowl. Data Eng., 27(1):180-192, 2015. https://doi.org/10.1109/TKDE.2014.2324592
  13. K. Gowda, G. Krishna, "Agglomerative clustering using the concept of mutual nearest neighbourhood", Pattern Recognition, 10(2):105-112, 1978. https://doi.org/10.1016/0031-3203(78)90018-3
  14. J. Chang, L. Wang, G. Meng, S. Xiang, C. Pan, "Deep Adaptive Image Clustering", International Conference on Computer Vision,2017.
  15. S. Xie, R. Girshick, P. Dollar, Z. Tu, K. He, "Aggregated residual transformations for deep neural networks", Computer Vision and Pattern Recognition, 2017.
  16. Y.H. Lee, H.J. Kim, "Implementation of Fish Detection based on Convolutional Neural Networks", Journal of he Semiconductor &Display Technology, vol.19, issue.3, pp.124-129, 2020.
  17. Karen Simonyan, Andrew Zisserman, "Very Deep Convolutional Networks for Large-Scale Image Recognition", Computer Vision and Pattern Recognition, 2015.
  18. Z. Wu, Y. Xiong, S.X. Yu, D. Lin, "Unsupervised feature learning via non-parametric instance discrimination", Computer Vision and Pattern Recognition, 2018.