References
- Dennis Gabor, "A new microscopic principle," Nature, 161, pp. 777-778, 1948. https://doi.org/10.1038/161777a0
- P. Hariharan, "Basics of Holography," Cambridge University Press, May 2002.
- W. Osten, A. Faridian, P. Gao, K. Korner, D. Naik, G. Pedrini, Al. Kumar Singh, M. Takeda, and M. Wilke, "Recent advances in digital holography [Invited]," Appl. Opt. 53, G44-G63, 2014. https://doi.org/10.1364/AO.53.000G44
- H. J. Gang, N. Kim, H. H. Song, S. G. Kim, T. G. Kim, W. S. Choe, M. S. Yun, S. C. Kim, S. H. Lee, E. S. Kim, H. J. Choe, H. Kim, J. H. Park, S. U. Min, G. H. Choe, D. G. Nam, S. H. Hong, G. M. Jeong, and G. H. Seo, "Digital holography technology trend," Information display, Vol.12, No.3, pp.18-50, Jun. 2011
- C. Dong, C. C. Loy, K. He and X. Tang, "Image Super-Resolution Using Deep Convolutional Networks," in IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 38, no. 2, pp. 295-307, 1 Feb. 2016. https://doi.org/10.1109/TPAMI.2015.2439281
- J. Kim, J. K. Lee, and K. M. Lee, "Accurate image super-resolution using very deep convolutional networks," in Proc. IEEE Conf. Comput. Vis. Pattern Recognit., pp. 1646-1654, Jun. 2016.
- W. Shi, J. Caballero, F. Huszar, J. Totz, A. P. Aitken, R. Bishop, D. Rueckert, and Z. Wang, "Real-time single image and video super-resolution using an efficient sub-pixel convolutional neural network," in Proc. IEEE Conf. Comput. Vis. Pattern Recognit., pp. 1874-1883, Jun. 2016.
- B. Lim, S. Son, H. Kim, S. Nah, and K. M. Lee, "Enhanced deep residual networks for single image super-resolution," in Proc. IEEE Conf. Comput. Vis. Pattern Recognit. Workshops, pp. 1132-1140, May 2017.
- Y. Zhang, K. Li, K. Li, L. Wang, B. Zhong, and Y. Fu, "Image super-resolution using very deep residual channel attention networks," in Proc. Eur. Conf. Comput. Vis., pp. 286-301 2018.
- X. Chu, B. Zhang, H. Ma, R. Xu, J. Li, and Q. Li, "Fast, accurate and lightweight super-resolution with neural architecture search," arXiv: 1901.07261, Jan. 2019, https://arxiv.org/abs/1901.07261 (accessed Sep. 1, 2020).
- N. Ahn, B. Kang, and K.-A. Sohn, "Fast, accurate, and, lightweight superresolution with cascading residual network," in Proc. Eur. Conf. Comput. Vis., pp. 252-268, 2018.
- C. Wang, Z. Li, and J. Shi, "Lightweight image super-resolution with adaptive weighted learning network," arXiv:1904.02358, Apr. 2019, https://arxiv.org/abs/1904.02358 (accessed Sep. 1, 2020).
- N. Verrier and C. Fournier, "Digital holography super-resolution for accurate three-dimensional reconstruction of particle holograms," Opt. Lett., Vol. 40, No. 2, pp. 217-220, Jan. 2015. https://doi.org/10.1364/OL.40.000217
- C. Fournier, F. Jolivet, L. Denis, N. Verrier, E. Thiebaut, C. Allier, and T. Fournel, "Pixel super-resolution in digital holography by regularized reconstruction," Appl. Opt., Vol. 56, No. 1, pp. 69-77, Jan. 2017. https://doi.org/10.1364/AO.56.000069
- T. Liu, K. De Haan, Y. Rivenson, Z. Wei, X. Zeng, Y. Zhang, and A. Ozcan, "Deep learning-based super-resolution in coherent imaging systems," Scientific reports, Vol.9, No.1, pp.1-13, Mar. 2019.
- Z. Luo, A. Yurt, R. stahl, A. Lambrechts, V. Reumers, D. Braeken, and L. Lagae, "Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks," Optics Express, Vol.27, No.10, pp.13581-13595, May 2019. https://doi.org/10.1364/OE.27.013581
- W. S. Kim, D. W. Kim, and Y. H. Seo, "Hologram Super-Resolution Using a Single Reverse Inceptionbased Deep Learning," In Proceedings of the Korean Society of Broadcast Engineers Conference, Kwangwoon Square & 80th Anniversary Hall, pp. 214-215, 2019.