DOI QR코드

DOI QR Code

오목 렌즈 함수를 이용한 초 고해상도 Computer generated hologram 생성 기법

Extremely High-Definition Computer Generated Hologram Calculation Algorithm with Concave Lens Function

  • 이창주 (경북대학교 전자전기공학부) ;
  • 최우영 (경북대학교 전자전기공학부) ;
  • 오관정 (한국전자통신연구원 디지털홀로그래피연구실) ;
  • 홍기훈 (한국전자통신연구원 디지털홀로그래피연구실) ;
  • 최기홍 (한국전자통신연구원 디지털홀로그래피연구실) ;
  • 전상훈 (한국전자통신연구원 디지털홀로그래피연구실) ;
  • 박중기 (한국전자통신연구원 디지털홀로그래피연구실) ;
  • 이승열 (경북대학교 전자전기공학부)
  • Lee, Chang-Joo (School of Electronic and Electrical Engineering, Kyungpook National University) ;
  • Choi, Woo-Young (School of Electronic and Electrical Engineering, Kyungpook National University) ;
  • Oh, Kwan-Jung (Electronics and Telecommunication Research Institute (ETRI)) ;
  • Hong, Keehoon (Electronics and Telecommunication Research Institute (ETRI)) ;
  • Choi, Kihong (Electronics and Telecommunication Research Institute (ETRI)) ;
  • Cheon, Sang-Hoon (Electronics and Telecommunication Research Institute (ETRI)) ;
  • Park, Joongki (Electronics and Telecommunication Research Institute (ETRI)) ;
  • Lee, Seung-Yeol (School of Electronic and Electrical Engineering, Kyungpook National University)
  • 투고 : 2020.08.28
  • 심사 : 2020.10.26
  • 발행 : 2020.11.30

초록

아날로그 홀로그램과 동등 이상의 대면적과 넓은 시야각을 가진 Computer generated hologram(CGH)을 생성하기 위해서는 매우 많은 픽셀 수가 요구된다. 이로 인해 고해상도의 CGH를 생성하기 위해서는 높은 성능의 연산장치를 바탕으로도 오랜 연산 시간이 필요한 문제점이 존재한다. 이를 해결하기 위해 본 논문에서는 미리 계산된 저해상도 CGH를 배열한 후 평행이동된 오목 렌즈 함수를 곱해주는 것을 통하여 고해상도 CGH를 생성하는 기법을 제안한다. Point cloud 방식으로 기록된 0.1기가픽셀의 CGH를 계산하고, 여기에 제안된 기법을 도입하여 2.5기가픽셀의 CGH를 매우 빠른 속도로 생성할 수 있었으며, 이렇게 생성된 CGH를 실험을 통하여 기록한 이미지상이 정상적으로 복원되는 것을 확인하였다.

A very large number of pixels is required to generate a computer generated hologram (CGH) with a large-size and wide viewing angle equivalent to that of an analog hologram, which incurs a very large amount of computation. For this reason, a high-performance computing device and long computation time were required to generate high-definition CGH. To solve these problems, in this paper, we propose a technique for generating high-definition CGH by arraying the pre-calculated low-definition CGH and multiplying the appropriately-shifted concave lens function. Using the proposed technique, 0.1 Gigapixel CGH recorded by the point cloud method can be used to calculate 2.5 Gigapixels CGH at a very high speed, and the recorded hologram image was successfully reconstructed through the experiment.

키워드

과제정보

This work was supported by Institute of Information & communications Technology Planning & Evaluation (IITP) grant funded by the Korea government(MSIT) (No. 2019-0-00001, Development of Holo-TV Core Technologies for Hologram Media Services)

참고문헌

  1. J. Park, K. Lee, and Y. Park, "Ultrathin wide-angle large-area digital 3D holographic display using a non-periodic photon sieve," Nat. Commun. 10(1), 1304, Mar 2019. https://doi.org/10.1038/s41467-019-09126-9
  2. E. Buckley, A. Cable, N. Lawrence, and T. Wilkinson, "Viewing angle enhancement for two-and three-dimensional holographic displays with random superresolution phase masks," Appl. Opt, Vol 45, pp 7334-7341, Oct 2006. https://doi.org/10.1364/AO.45.007334
  3. D. Blinder, T. Shimobaba, "Efficient algorithms for the accurate propagation of extreme-resolution holograms," Opt. Express, Vol 27, pp 29905-29915, Oct 2019. https://doi.org/10.1364/OE.27.029905
  4. K. Matsushima, "Computer-generated holograms for three dimensional surface objects with shade and texture," Appl. Opt, Vol 44, pp 4607-4614, Aug 2005. https://doi.org/10.1364/AO.44.004607
  5. N. Masuda, T. Ito, T. Tanaka, A. Shiraki, and T. Sugie, "Computer generated holography using a graphics processing unit," Opt. Express, Vol 14, pp 603-608, Jan 2006. https://doi.org/10.1364/OPEX.14.000603
  6. N. Takada, et al. "Fast high-resolution computer-generated hologram computation using multiple graphics processing unit cluster system," Appl. Opt, Vol 51, pp 7303-7307, Oct 2012. https://doi.org/10.1364/AO.51.007303
  7. J. Song, J. Park, H. Park, and J.-I. Park, "Real-time generation of high-definition resolution digital holograms by using multiple graphic processing units," Opt. Eng. 52(1), 015803, Jan 2013. https://doi.org/10.1117/1.OE.52.1.015803
  8. R. P. Muffoletto, J. M. Tyler, and J. E. Tohline, "Shifted fresnel diffraction for computational holography," Opt. Express, Vol 15(9), pp 5631-5640, Jul 2007. https://doi.org/10.1364/OE.15.005631
  9. 藤田, 有馬, 松島, 中原, "物体光波のデジタル拡大/縮小編集を用いた高解像度CGH の作成", HODIC Circular, Vol 32, pp 10-15, May 2012.
  10. T. Mishina, M. Okui, and F. Okano, "Calculation of holograms from elemental images captured by integral photography," Appl. Opt, Vol 45(17), pp 4026-4036, Jun 2006. https://doi.org/10.1364/AO.45.004026
  11. L. Ai, H. Cao, H. Sun, and X. Shi, "Performance enhancement of integral imaging based Fresnel hologram capturing by the intermediate view reconstruction," Opt. Express, Vol 27, pp 31942-31955, Oct 2019. https://doi.org/10.1364/OE.27.031942