DOI QR코드

DOI QR Code

Direct Synthesis of Au/TiO2/graphene Composites and Their Application for Degradation of Various Organic Dyes

그래파이트로부터 직접 제조한 Au/TiO2/그래핀 복합체와 이를 이용한 염료의 광분해에 관한 연구

  • Jeong, Gyoung Hwa (Department of Materials Science and Engineering, KAIST) ;
  • Kim, Sang-Wook (Department of Applied Chemistry and Biological Engineering, Ajou University)
  • 정경화 (한국과학기술원 신소재공학과) ;
  • 김상욱 (아주대학교 응용화학생명공학과)
  • Received : 2020.09.14
  • Accepted : 2020.10.12
  • Published : 2020.12.10

Abstract

In this research, we synthesized Au/TiO2/graphene composites using ionic surfactants for the exfoliation of graphite layers, directly. In the graphene composite, TiO2 with thin nanosheet shapes was distributed on the graphene surface and Au nanoparticles with less than 10 nm sizes were evenly distributed on the surface of the TiO2 nanosheets. The Au/TiO2/graphene composite was then applied to the photodegradation of various dyes such as methylene blue, methylene orange and rhodamine 6G, and B. Among them, the methylene blue showed the most excellent photodegradation activity (91.6%) while the rhodamine B exhibited 31.0%.

본 연구에서는 그래파이트로부터 직접적으로 그래핀 복합체를 합성하는 방법을 이용하여 Au/TiO2/그래핀 복합체를 합성하였다. 계면활성제를 이용하여 박리된 그래파이트로부터 합성된 그래핀 복합체에서 TiO2는 아주 얇은 시트 형태로 그래핀 표면에 분포되어있고 10 nm 미만의 Au 나노입자들이 TiO2 시트 표면 위에 골고루 분포되어 있다. 이렇게 만들어진 그래핀 복합체를 이용하여 다양한 염료의 광분해 반응에 적용하였다. 이들 중 가장 광분해 활성에 뛰어난 것으로 나타난 염료는 메틸렌블루(91.6%)였으며 로다민 B(31.0%)에서는 광분해 특성이 뛰어나지 않는 것으로 나타났다.

Keywords

References

  1. C. Yang, W. Dong, G. Cui, Y. Zhao, X. Shi, X. Xia, B. Tang, and W. Wang, Highly-efficient photocatalytic degradation of methylene blue by PoPD-modified TiO2 nanocomposites due to photosensitization-synergetic effect of TiO2 with PoPD, Sci. Rep., 7, 3973 (2017). https://doi.org/10.1038/s41598-017-04398-x
  2. H. Eskandarloo, A. Kierulf, and A. Abbaspourrad, Nano- and micromotors for cleaning polluted waters: Focused review on pollutant removal mechanisms, Nanoscale, 9, 13850-13863 (2017). https://doi.org/10.1039/C7NR05494G
  3. R. Wang, K. Shi, D. Huang, J. Zhang, and S. An, Synthesis and degradation kinetics of TiO2/GO composites with highly efficient activity for adsorption and photocatalytic degradation of MB, Sci. Rep., 9, 18744 (2019). https://doi.org/10.1038/s41598-019-54320-w
  4. S. A. Khan, Z. Arshad, S. Shahid, I. Arshad, K. Rizwan, M, Sher, and U. Fatinn, Synthesis of TiO2/graphene oxide nanocomposites for their enhanced photocatalytic activity against methylene blue dye and ciprofloxacin, Compos. Part B, 175, 107120 (2019). https://doi.org/10.1016/j.compositesb.2019.107120
  5. A. R. Khataee and M. B. Kasiari, Photocatalytic degradation of organic dyes in the presence of nanostructured titanium dioxide: Influence of the chemical structure of dyes, J. Mol. Catal. A: Chem., 328, 8-26 (2010) https://doi.org/10.1016/j.molcata.2010.05.023
  6. S. Lim, T.-D. Nguyen-Phan, and E. W. Shin, Effect of heat treatment temperatures on photocatalytic degradation of methylene blue by mesoporous titania, Appl. Chem. Eng., 22, 61-66 (2011).
  7. M.-J. Hwang, T. B. Nyguyen, and K.-S. Ryu, A study on photocatalytic decomposition of methylene blue by crystal structures of anatase/rutile TiO2, Appl. Chem. Eng., 23, 148-152 (2012).
  8. R. Biswas, S. Mete, M. Mandal, B. Banerjee, H. Singh, I. Ahmed, and K. K. Haldar, Novel green approach for fabrication of Ag2CrO4/TiO2/Au/r-GO hybrid biofilm for visible light-driven photocatalytic performance, J. Phys. Chem. C, 124, 3373-3388 (2020). https://doi.org/10.1021/acs.jpcc.9b10866
  9. C. R. Gilmour, A. Ray, J. Zhu, and M. B. Ray, Photocatalytic performance of titanium dioxide thin films from polymer-encapsulated titania, Ind. Eng. Chem. Res., 52, 17800-17811 (2013). https://doi.org/10.1021/ie402096h
  10. G. H. Jeong, S. P. Sasikala, T. Yun, G. Y. Lee, W. J. Lee, and S. O. Kim, Nanoscale assembly of 2D materials for energy and environmental applications, Adv. Mater., 32, 1907006 (2020). https://doi.org/10.1002/adma.201907006
  11. S. D. Perera, R. G. Mariano, K. Vu, N. Nour, O. Seitz, Y. Chabal, and K. J. Balkus Jr., Hydrothermal synthesis of graphene-TiO2 nanotube composites with enhanced photocatalytic activity, ACS Catal., 2, 949-956 (2012). https://doi.org/10.1021/cs200621c
  12. Y. Zhang, Z. Tang, X. Fu, and Y. Xu, TiO2-graphene nanocomposites for gas-phase photocatalytic degradation of volatile aromatic pollutant: Is TiO2-graphene truly different from other TiO2-carbon composite materials?, ACS Nano, 12, 7303-7314 (2010).
  13. G. H. Jeong, S. H, Kim, M. Kim, D. Choi, J. H. Lee, J.-H. Kim, and S.-W. Kim, Direct synthesis of noble metal/graphene nanocomposites from graphite in water: Photo-synthesis, Chem. Commun., 47, 12236-12238 (2011). https://doi.org/10.1039/c1cc15091j
  14. A. Datcu, L, Duta, A. Perez del Pino, C. Logofatu, C. Luculescu, A. Duta, D. Perniu, and E. Gyorgy, One-step preparation of nitrogen doped titanium oxide/Au/reduced graphene oxide composite thin films for photocatalytic applications, RSC Adv., 5, 49771-49779 (2015). https://doi.org/10.1039/C5RA07853A
  15. J.-B. Wu, M.-L. Lin, X. Cong, H.-N. Liu, and P.-H. Tan, Raman spectroscopy of graphene-based materials and its applications in related devices, Chem. Soc. Rev., 47, 1822-1873 (2018). https://doi.org/10.1039/C6CS00915H
  16. P. Benjwal, M. Kumar, P. Chamoli, and K. K. Kar, Enhanced photocatalytic degradation of methylene blue and adsorption of arsenic (iii) by reduced graphene oxide (rGO)-metal oxide (TiO2/Fe3O4) based nanocomposites, RSC Adv., 5, 73249-73260 (2015). https://doi.org/10.1039/C5RA13689J
  17. S. Misra, L. Li, J. Jian, J. Huang, X. Wang, D. Zemlyanov, J.-W. Jang, F. H. Ribeiro, and H. Wang. Tailorable Au nanoparticles embedded in epitaxial TiO2 thin films for tunable optical properties, ACS Appl. Mater. Interfaces, 10, 32895-32902 (2018) https://doi.org/10.1021/acsami.8b12210
  18. R. S. Sonawane and M. K. Dongare, Sol-gel synthesis of Au/TiO2 thin films for photocatalytic degradation of phenol in sunlight, J. Mol. Catal. A: Chem., 243, 68-76 (2006). https://doi.org/10.1016/j.molcata.2005.07.043
  19. M. Okazaki, Y. Suganami, N. Hirayama, H. Nakata, T. Oshikiri, T. Yokoi, H, Misawa, and K. Maeda, Site-selective deposition of a cobalt cocatalyst onto a plasmonic Au/TiO2 photoanode for improved water oxidation, ACS Appl. Energy Mater., 3, 5142-5146 (2020). https://doi.org/10.1021/acsaem.0c00857
  20. Z. Zhang, L. Zhang, M. N. Hedhili, H. Zhang, and P. Wang, Plasmonic gold nanocrystals coupled with photonic crystal seamlessly on TiO2 nanotube photoelectrodes for efficient visible light photo-electrochemical water splitting, Nano Lett., 13, 14-20 (2013). https://doi.org/10.1021/nl3029202
  21. J. Harris, R. Silk, M. Smith, Y. Dong, W.-T. Chen, and G. I. N. Waterhouse, Hierarchical TiO2 nanoflower photocatalysts with remarkable activity for aqueous methylene blue photo-oxidation, ACS Omega, 5, 30, 18919-18934 (2020). https://doi.org/10.1021/acsomega.0c02142
  22. S. Ghasemi, S. J. Hashemian, A. A. Alamolhoda, I. Gocheva, and S. R. Setayesh, Plasmon enhanced photocatalytic activity of Au@ TiO2-graphene nanocomposite under visible light for degradation of pollutants, Mater. Res. Bull., 87, 40-47 (2017). https://doi.org/10.1016/j.materresbull.2016.11.020