참고문헌
- Y. Wu, J. Lim, and M.‐H. Yang, Online object tracking: a benchmark, in IEEE Conf Comput Vision Pattern Recogn., Portland, OR, USA, June 2013, pp. 2411-2418.
- Y. Wu et al., Object tracking benchmark, IEEE Trans. Pattern Anal. Mach. Intell. 37 (2015), no. 9, 1834-1848. https://doi.org/10.1109/TPAMI.2014.2388226
- C. Ma et al., Hierarchical convolutional features for visual tracking, in IEEE Int Conf. Comput. Vision, Santiago, Chile, Dec. 2015, pp. 3074-3082.
- S. Hong et al., Online tracking by learning discriminative saliency map with convolutional neural network, in Int. Conf. Machine Learn., Lille, France, July 2015, pp. 597-606.
- Y. Song et al., VITAL: VIsual Tracking via Adversarial Learning, in IEEE/CVF Conf. COmput. CIsion Pattern Recogn., Salt Lake City, UT, USA, June 2018, pp. 8990-8999.
- H. Nam and B. Han, Learning multi‐domain convolutional neural networks for visual tracking, IEEE Conf. Comput. Vision Pattern Recogn., Las Vegas, NV, USA, June 2016, pp. 4293-4302.
- M. Danelljan et al., ECO: efficient convolution operators for tracking, in IEEE Conf. Comput. Vision Pattern Recogn., Honolulu, HI, USA, July 2017, pp. 6638-6646.
- J. Deng et al., ImageNet: a large‐scale hierarchical image database, IEEE Conf. Omput. Vision Pattern Recogn., Miami, FL, USA, June 2009, pp. 248-255.
- M. Kristan et al., A novel performance evaluation methodology for single‐target trackers, IEEE Trans. Pattern Anal. Mach. Intell. 38 (2016), no. 11, 2137-2155. https://doi.org/10.1109/TPAMI.2016.2516982
- N. Alt, S. Hinterstoisser, and N. Navab, Rapid selection of reliable templates for visual tracking, in IEEE Comput. Soc. Conf. Comput. Vision Pattern Recogn., San Francisco, CA, USA, June 2010, pp. 1355-1362.
- X. Jia, H. Lu, and M.-H. Yang, Visual tracking via adaptive structural local sparse appearance model, in IEEE Conf. Comput. Vision Pattern Recogn., Providence, RI, USA, June 2012, pp. 1257-1264.
- D. Lee, J. Sim, and C. Kim, Visual tracking using pertinent patch selection and masking, in IEEE Conf. Comput. Vision Pattern Recogn., Columbus, OH, USA, June 2014, pp. 3486-3493.
- W. Zhong, H. Lu, and M.-H. Yang, Robust object tracking via sparsity‐based: collaborative model, in IEEE Conf. Comput. Vision Pattern Recogn., Providence, RI, USA, June 2012, pp. 1838-1845.
- B. Hariharan et al., Hypercolumns for object segmentation and fine‐grained localization, in IEEE Conf. Comput. Vision Pattern Recogn., Boston, MA, USA, June 2015) pp. 447-456.
- D. Wang et al., Fast and effective color‐based object tracking by boosted color distribution, Pattern Anal. Appicat. 16 (2013), no. 4, 647-661. https://doi.org/10.1007/s10044-013-0347-5
- H. Lu et al., Pixel‐wise spatial pyramid‐based hybrid tracking, IEEE Trans. Circuits Syst. Video Technol. 22 (2012), no. 9, 1365-1376. https://doi.org/10.1109/TCSVT.2012.2201794
- H. Song, Y. Zheng, and K. Zhang, Robust visual tracking via self‐similarity learning, Electron. Lett. 53 (2016), no. 1, 20-22. https://doi.org/10.1049/el.2016.3011
- W. Chen, K. Zhang, and Q. Liu, Robust visual tracking via patch based kernel correlation filters with adaptive multiple feature ensemble, Neurocomput. 214 (2016), 607-617. https://doi.org/10.1016/j.neucom.2016.06.048
- K. Zhang et al., Visual tracking using spatio‐temporally nonlocally regularized correlation filter, Pattern Recogn. 83 (2018), 185-195. https://doi.org/10.1016/j.patcog.2018.05.017
- K. Zhang et al., Parallel attentive correlation tracking, IEEE Trans. Image Proc. 28 (2019), no. 1, 479-491. https://doi.org/10.1109/TIP.2018.2868561
- J. Fan et al., Complementary tracking via dual color clustering and spatio‐temporal regularized correlation learning, IEEE Access 6 (2018), 56526-56538. https://doi.org/10.1109/ACCESS.2018.2872691
- J. Yang, K. Zhang, and Q. Liu, Robust object tracking by online Fisher discrimination boosting feature selection, Comput. Vis. Image Underst. 153 (2016), 100-108. https://doi.org/10.1016/j.cviu.2016.02.003
- K. Zhang et al., Visual tracking via boolean map representations, Pattern Recog. 81 (2018), 147-160. https://doi.org/10.1016/j.patcog.2018.03.029
- X. Lan et al., Learning common and feature‐specific patterns: a novel multiple‐sparse‐representation‐based tracker, IEEE Trans. Image Proc. 27 (2018), no. 4, 2022-2037. https://doi.org/10.1109/TIP.2017.2777183
- X. Lan et al., Modality‐correlation‐aware sparse representation for RGB‐infrared object tracking, Pattern Recog. Lett. (2018), in press, doi: 10.1016/j.patrec.2018.10.002.
- X. Lan, A. J. Ma, and P. C. Yuen, Multi‐cue visual tracking using robust feature‐level fusion based on joint sparse representation, in IEEE Conf. Comput. Vision Pattern Recogn., Columbus, OH, USA, June 2014, pp. 1194-1201.
- X. Lan et al., Joint sparse representation and robust feature‐level fusion for multi‐cue visual tracking, IEEE Trans. Image Process. 24 (2015), no. 12, 5826-5841. https://doi.org/10.1109/TIP.2015.2481325
- C. Rother, V. Kolmogorov, and A. Blake, Grabcut: interactive foreground extraction using iterated graph cuts, ACM Trans. Graphics 23 (2014), no. 3, 309-314. https://doi.org/10.1145/1015706.1015720
- Y.‐H. Tsai, M.‐H. Yang, and M. Black, Video segmentation via object flow, in IEEE Conf. Comput. Vision Pattern Recogn., Las Vegas, NV, USA, June 2016, pp. 3899-3908.
- X. Lan, S. Zhang, and P. C. Yuen, Robust joint discriminative feature learning for visual tracking, in Proc. Int. Joint Conf. Artif. Intell., New York, USA, July 2016, pp. 3403-3410.
- X. Lan, P. C. Yuen, and R. Chellappa, Robust MIL‐based feature template learning for object tracking, in Proc. AAAI Conf. Artif. Intell., San Francisco, CA, USA, Feb. 2017, pp. 4118-4125.
- X. Lan et al., Robust collaborative discriminative learning for RGB‐infrared tracking, in Proc. AAAI Conf. Artif. Intell., New Orleans, LA, USA, Feb. 2018, pp. 7008-7015.
- K. Simonyan and A. Zisserman, Very deep convolutional networks for large‐scale image recognition, arXiv:1409.1556., (2014).
- S. Hare, A. Saffari, and P. H. S. Torr, Struck: structured output tracking with kernels, in Int. Conf. Comput. Vision, Barcelona, Spain, Nov. 2011, pp. 263-270.
- Z. Kalal, K. Mikolajczyk, and J. Matas, Tracking‐learning‐detection, IEEE Trans. Pattern Anal. Mach. Intell. 34 (2012), no. 7, 1409-1422. https://doi.org/10.1109/TPAMI.2011.239
피인용 문헌
- Combining Spatio-Temporal Context and Kalman Filtering for Visual Tracking vol.7, pp.11, 2019, https://doi.org/10.3390/math7111059
- CitiusSynapse: A Deep Learning Framework for Embedded Systems vol.11, pp.23, 2019, https://doi.org/10.3390/app112311570