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1  |   INTRODUCTION

The massive multiple input multiple output (MIMO) system 
is one of the most important technologies for meeting var-
ious demands in fifth‐generation communication networks 
[1‒4]. In a massive MIMO system, the base station (BS) is 
equipped with an antenna array with a few hundred antennas, 
simultaneously serving many tens of mobile stations (MSs), 
which have one or a few antennas. The massive MIMO of-
fers huge advantages over conventional MIMO, such as im-
proved spectral efficiency, improved energy efficiency [1], 
enhanced reliability [5], and reduced interference [5]. In mas-
sive MIMO systems, accurate channel estimation is essen-
tial for functions such as signal detection, beamforming, and 
resource allocation. Owing to the large number of antennas 
at the BS, the channel estimation of the massive MIMO is 
distinct from that of the conventional MIMO, and it has many 

problems, such as pilot contamination, pilot overhead, and 
computational complexity [6]. Thus, channel estimation is a 
major challenge in massive MIMO systems.

Massive MIMO systems can operate in the time division 
duplex (TDD) or frequency division duplex (FDD) mode, 
where the FDD mode has several advantages with respect to 
the TDD mode. In FDD systems, the uplink and downlink 
use different frequency bands, which lead to different chan-
nels for the uplink and downlink. However, in the TDD sys-
tem, owing to the use of the same frequency band, the uplink 
and downlink channels are the same. Thus, uplink channel 
estimation can be used in downlink and the linear pre‐coding 
can be applied to focus each signal at its desired user. On the 
other hand, in the TDD system, the uplink estimation over-
head is proportional to the number of active users, whereas 
in FDD, this overhead is proportional to the BS antenna 
number, which is larger than the number of active users in 
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massive MIMO. Finally, in contrast to FDD, in TDD, the es-
timation quality (per antenna) cannot be reduced by adding 
more antennas at the BS [7].

The channel estimation should be implemented on both 
downlink and uplink. Owing to the existence of several re-
ceiver antennas in the uplink, the channel estimation is sim-
ple in this direction. However, in downlink, the number of 
receiver antennas is small, which leads to many problems 
in channel estimation. To address this issue, the TDD tech-
nique is used in massive MIMO. The uplink and downlink 
channels are approximately the same in TDD. Thus, in TDD‐
based massive MIMO, the uplink channel is estimated and 
the result is used in the downlink [8]. However, the uplink 
channel estimation may be inaccurate or even outdated for the 
downlink under rapid time‐varying channel conditions, which 
consequently leads to performance deterioration [9,10]. To 
solve this problem, in TDD‐based multiuser massive MIMO 
systems, along with the uplink channel estimation, the down-
link channel estimation should also be performed for accurate 
signal detection.

Conventional methods for downlink channel estimation 
of TDD‐based massive MIMO are the pilot‐based meth-
ods [9‒11]. In these methods, some training data, which are 
known in both transmitter and receiver, are sent from the BS to 
each MS user, and each user estimates channels between itself 
and all BS antennas. A large pilot overhead and less informa-
tion transferring rate are some drawbacks of the pilot‐based 
method, which have been solved by blind channel estimation 
methods.

In the blind methods, statistical properties of the received 
signals are often used for channel estimation. One of these 
methods, called independent component analysis (ICA), is 
used for the blind estimation of the flat fading massive MIMO 
channel [12]. Given that at ICA, the number of observations 
should be larger than the unknown parameter number, this 
method is not applicable to downlink channel estimation 
in massive MIMO. Another method is the subspace‐based 
method, which is presented for the blind estimation of the 
frequency‐selective MIMO channel [13,14]. In addition, 
in [15], blind MIMO channel estimation was implemented 
based on subspace and circulant properties of the received 
signal. However, none of these methods can be applied for 
estimating the massive MIMO downlink channel.

For TDD‐based massive MIMO, Ngo et al. showed that 
without sending any pilot, downlink channel estimation, and 
therefore, signal detection can be performed if the channel 
has hardening property [16]. For this purpose, in flat fading 
channels, by choosing the maximum ratio (MR) or zero forc-
ing (ZF) pre‐coding [17], the channel gain and large‐scale 
fading coefficients are necessary to perform the signal detec-
tion in MS. Consequently, the TDD‐based massive MIMO 
downlink channel estimation is restricted to the estimation of 
channel gain [18]. In the conventional methods for channel 

gain estimation, only the mean of channel gain is used, which 
leads to a large estimate error [19,20]. Ngo et al. [16] showed 
that using the ZF and MR pre‐coding, the mean power of 
the received signal in MS is a function of channel gain and 
large‐scale fading [16]. Therefore, assuming that large‐scale 
fading is known, they estimated the channel gain from the 
mean power of the received signal and used it for signal de-
tection. To the best of our knowledge, this is the first method 
presented for blind estimation of the downlink channel in 
TDD‐based multiuser massive MIMO.

In all abovementioned methods, a linear channel model 
was assumed for channel estimation. However, in practice, 
the massive MIMO channel contains nonlinearities, mainly 
caused by nonlinear high‐power amplifiers (HPAs), which 
amplify the signals before they are applied to the transmitter 
antennas [21]. Nonlinear HPA can be described using two 
models [22]: memoryless models with flat frequency re-
sponses, and models with memory having frequency‐selec-
tive responses.

The performance of MIMO systems in the presence of 
nonlinear HPA has been extensively studied [23]. However, 
in the context of MIMO channel estimation in the presence 
of nonlinear HPA, the following studies have been conducted. 
In [22], the MIMO channel estimation was performed in 
the presence of a nonlinear amplifier. In this method, a least 
square (LS) estimation was applied for channel estimation 
through some pilot transmissions. In another method, nonlin-
ear channel estimation was presented based on support vector 
machines (SVMs) [24]. These methods could not be applied 
to estimate the massive MIMO downlink channel, because in 
this scenario, the number of unknown parameters was larger 
than that of known data. In addition, the use of pilot is another 
drawback of these methods, which leads to pilot overhead and 
less information transferring rate. Therefore, the blind down-
link channel estimation of a massive MIMO system in the 
presence of nonlinear HPA is a significant problem, which has 
not been studied yet.

This paper proposes a new blind method to estimate the 
downlink flat fading channel of a TDD‐based massive MIMO 
system in the presence of nonlinear HPA. In the proposed 
method, we use the Bussgang decomposition for converting 
the nonlinear effect of HPA into a linear problem. We apply 
ZF and MR pre‐coding in the BS based on uplink channel es-
timates. Then, we show that the average power of the received 
signal at each user is a function of channel gain, large‐scale 
fading, and nonlinear distortion variance. Therefore, knowing 
the other two quantities, the channel gain is estimated accord-
ing to the average power of the received signal, and finally, 
used for signal detection. The simulation results show better 
performance of the proposed method compared to that pro-
posed in [16].

The rest of this paper is organized as follows. In the next 
section, the nonlinear HPA models are briefly reviewed. In 
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Section 3, we present the system model, and then, the pro-
posed blind channel estimation method is introduced in 
Section 4. Comparisons are presented in Section 5, followed 
by the conclusions presented in Section 6.

We use bold‐face large and small case letters to represent 
the matrices and vectors, respectively. The notations used in 
the paper are as follows (Table 1).

2  |   BRIEF REVIEW OF 
NONLINEAR HPA MODELS

In the signal transmission process, the modulated signal is 
amplified by an HPA and then sent via an antenna. In fact, the 
HPA may operate in a nonlinear region, which leads to dis-
tortion in amplitude or phase of the signal. The input signal 
of the HPA is represented as follows:

where ρ(t) and φ(t) are the amplitude and phase of the sig-
nal, respectively. The HPA output signal can be expressed 
as [25]:

where A[ρ(t)] is the amplitude nonlinearity, called AM/AM 
conversion, and Φ[ρ(t)] is the phase nonlinearity, called AM/
PM conversion.

Three examples of flat frequency models include a trav-
eling wave tube amplifier (TWTA), a solid‐state power am-
plifier (SSPA), and a soft‐envelope limiter (SEL). In the 
TWTA model, according to the Saleh memory model [26], 
the AM/AM and AM/PM characteristics are as follows:

where Asat is the amplifier input saturation voltage. In the 
SSPA model, the functions A[ρ(t)] and Φ[ρ(t)] are given as 
[25‒27]:

where A0 is the maximum output amplitude and p is a control 
parameter of the transition from a linear region to a saturation 
region [28]. Finally, the AM/AM and AM/PM characteristics 
based on the SEL model [29] are

Besides, based on the Bussgang's theorem, the nonlinear 
effect of the model (2) can be expressed as a nonlinear distur-
bance with Gaussian distribution [29]. As a result, the output 
of the nonlinear HPA decomposes into the sum of two uncor-
related parts as [23]:

where α is a constant coefficient, which is dependent on the 
amplifier's characteristics and is expressed as follows:

(1)x(t)=�(t)ej�(t),

(2)z(t)= f (x(t))=A[�(t)]ej{�(t)+�[�(t)]},

(3)A[�(t)]=A2
sat

�(t)

�(t)2+A2
sat

,

(4)�[�(t)]=
�

3

�(t)2

�(t)2+A2
sat

,

(5)A[�(t)]=
�(t)

[
1+

(
�(t)

A0

)2p] 1

{2p}

,

(6)� [� (t)]=0,

(7)A [𝜌 (t)]=

{
𝜌 (t) 𝜌 (t)≤Asat

Asat 𝜌 (t)>Asat

,

(8)�[�(t)]=0.

(9)z(t)= f (x(t))=�x(t)+d(t),

(10)�=
� [x∗ (t) z (t)]

�
[
|x (t)|2

] .

T A B L E  1   Notations used in this paper

A[ρ(t)] Amplitude nonlinearity

Φ[ρ(t)] Phase nonlinearity

α A constant coefficient for nonlinear HPA

d(t) Nonlinear distortion of HPA

σd
2 Variance for nonlinear distortion

E{.} Expectation operator

M Number of antennas in the base station

K Number of mobile receivers

βk Large‐scale fading

hk Small‐scale fading coefficients vector

τu,p Pilot symbols number of users

ρu Transmit signal‐to‐noise ratio of each pilot symbol

vk Uplink channel estimation error

γk Variance of uplink channel estimation

αk Pre‐coding vector

[.]k The kth column of a matrix

‖.‖ Euclidean norm

(.)H Hermitian

wk(n) Complex Gaussian noise

CN(0,1) The complex Gaussian distribution with zero mean 
and unit variance

ξk The average sample power of the received signal in 
kth user

|.| Absolute value
p
→ Convergence in probability

[.]k,k′ The k,k'sth element of the matrix

τc Length of the coherence interval in symbols

τd The number of downlink transmitted symbols in the 
coherence interval
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In addition, d(t) denotes the nonlinear distortion, which is 
a random variable with Gaussian distribution with zero mean 
and variance �2

d
 [22]:

3  |   SYSTEM MODELING IN THE 
PRESENCE OF NONLINEAR HPA

We consider a single‐cell massive MIMO system with a 
single BS equipped with M antennas and K single‐antenna 
users, where M > K. The Rayleigh channel between the BS 
antennas and the kth user is a M × 1 vector channel, which is 
modeled as [16]:

In this model, βk represents large‐scale fading, which is 
constant in the coherence interval, and hk is an M × 1 vector, 
which contains small‐scale fading coefficients. We assume 
that the elements of hk are uncorrelated random variables 
with zero mean and unit variance. Moreover, hk and hk′ are 
assumed to be independent for k≠ k′. The mth elements of gk 
and hk are represented as gm

k
 and hm

k
, respectively.

We focus on the channel estimation of the downlink in 
a TDD‐based multiuser massive MIMO. The system's block 
diagram is shown in Figure 1. In the first step, the user's sig-
nals are pre‐coded using the uplink channel estimates, and 
then, sent to HPA. Thus, the channel vectors should be esti-
mated in the uplink direction. For this purpose, we assume 
that for each coherence interval, the uplink channel is esti-
mated by simultaneously sending τu,p orthogonal pilot sym-
bols by all users, where τu,p ≥ K. When a linear HPA is used 

in MS during uplink training, the M × τu,p received signals at 
the BS are given by [30]:

where Xu is an K × τu,p vector with the k, nth element being the 
pilot of the kth user at the nth time index, G is the uplink chan-
nel matrix as G≜ [g1,… ,gK], Nu is uplink noise, which is an 
M × τu,p matrix with i.i.d CN(0,1) elements, and ρu is the uplink 
signal‐to‐noise ratio (SNR) of each pilot symbol. In this case, 
the linear MMSE estimate of gk is given by [30]:

where vk is an M × 1 uplink channel estimation error vector, 
which is independent of gk. The variance of the mth element 
of ĝk is given by:

If there is a nonlinear HPA in the MS, by assuming that all 
users have used a similar nonlinear HPA, by using Bussgang's 
theorem and combining (9) and (13), the received signals at 
the BS are given by:

where Du is the K × τu,p matrix, where the k, nth element is 
the nonlinear HPA distortion of the kth user at the nth time 
index. In this case, (16) can be rewritten as:

where N�

u
=
√
�uGDT

u
+Nu. Given that Du and Nu have 

Gaussian distribution, N′

u
 also has Gaussian distribution. In 

this case, the linear MMSE estimate of gk is given by:

(11)�2
d
=�[z∗(t)z(t)]−�2

�[x∗(t)x(t)].

(12)gk =

√
�khk.

(13)Yu =
√
�uGXu+Nu,

(14)ĝk =

𝜏u,p𝜌u𝛽k

𝜏u,p𝜌u𝛽k +1
gk +

√
𝜏u,p𝜌u𝛽k

𝜏u,p𝜌u𝛽k +1
vk,

(15)Var{ĝm
k
}=E{|ĝm

k
|2}=

𝜏u,p𝜌u𝛽
2
k

𝜏u,p𝜌u𝛽k +1
≜ 𝛾k.

(16)Yu =
√
�uG(�Xu+Du)T

+Nu,

(17)Yu =
√
�uG�xT

u
+N�

u
,

F I G U R E  1   Block diagram of the considered massive MIMO system in the presence of nonlinear HPA
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After estimating the uplink channel, we use it in down-
link transmission. For this purpose, suppose that sk(n) is the 
nth symbol of the signal, which must be sent to the kth user. 
In addition, s(n)≜ [s1(n) … sK(n)]T displays a K × 1 vector 
containing all signals sent to the K user, and {s(n)sH(n)}= IK, 
where IK is K × K identity matrix. Let x(n)≜ [x1(n)… xM(n)]T 
be M × 1 vector of the pre‐coder output, in which xm (n) is the 
nth symbol of signal sent to the mth antenna. For linear pre‐
coding, the x(n) is considered as follows [[16]]:

where ak is the M × 1 vector determined using uplink channel 
estimation values Ĝ, ρd is the transfer mean power, and ηk is 
the power factor associated with the kth user. In this paper, 
MR and ZF pre‐coding are used. For MR pre‐coding, ak is 
chosen as [17]:

and in the ZF pre‐coding ak is chosen as [[17]]:

According to Figure 1, after pre‐coding, the signal passes 
through a nonlinear HPA. In this paper, we use the Bussgang's 
theorem for modeling the nonlinear effect of HPA. Thus, by 
using (9), the output of nonlinear HPA is as follows:

where z(n)≜ [z1(n) … zM(n)]T and d(n)≜ [d1(n) … dM(n)]T .  
In this model, we assume that the nonlinear HPAs of all 
branches have similar characteristics, which leads to constant 
α in all branches.

On the other hand, in MS, the nth sample of the signal 
received for the kth user is given by:

where wk(n)∼CN(0,1) is additive complex Gaussian noise. 
By replacing z(n) from (22), we have:

where akk′ is defined as follows:

and akk is named as the kth channel gain.
In (24), the second term on the right side indicates the 

interference from other users and the third term shows the 
effect of nonlinear HPA. In this model, to detect the sk(n) 
at the kth user, we need to determine the value of channel 
gain akk. Therefore, the downlink channel estimation of the 
TDD‐based multiuser massive MIMO system is reduced to 
the estimation of the channel gain akk.

4  |   PROPOSED BLIND CHANNEL 
ESTIMATION METHOD

To estimate the channel gain in the proposed method, we cal-
culate the average power of the receiving signal for each user 
in the coherence interval as:

where ξk is the average sample power of the received signal 
for the kth user and τd is the number of downlink transmitted 
symbols in the coherence interval. According to the law of 
large numbers, for τd → ∞ we have:

According to (24) we have:

In (28), as the users’ signals have zero mean and unit aver-
age energy, and are independent for k≠ k′, we have:

(18)ĝk =

𝛼2𝜏u,p𝜌u𝛽k

𝛼2𝜏u,p𝜌u𝛽k +1
gk +

√
𝛼2𝜏u,p𝜌u𝛽k

𝛼2𝜏u,p𝜌u𝛽k +1
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k
.

(19)x(n)=
√
�d

K�

k=1

√
�kaksk (n) , 1≤n≤Td,

(20)
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‖ĝk‖, k=1,… ,K,
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1

‖[Ĝ (Ĝ
H

Ĝ )
−1
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[Ĝ (Ĝ

H
Ĝ )

−1

]k.

(22)

z(n)=�x(n)+d(n)

=�
√
�d

K∑
k=1

√
�kaksk(n)+d(n)

,

(23)yk(n)=gH
k

z(n)+wk(n),

(24)
yk(n)=�

√
�d�kakksk(n)

+�
K∑

k�≠k

√
�d�k�akk�sk� (n)+d(n)gH

k
+wk(n),

(25)akk′ ≜gH
k

ak′

(26)�k ≜
|yk(1)|2+ |yk(2)|2+⋯+ |yk(�d)|2

�d

,

(27)�k −E
{
|yk(n)|2

} p
→ 0.

(28)

E
�
�yk (n) �2

�
=E

�
�d�k�akk�2�2s2

k
(n)

+

K�

k�≠k

K�

k��≠k

�2�d

√
�k��k��akk�akk�sk� (n) sk�� (n)

+gH
k

d (n) dH
(n) gk +w2

k
(n)

+2
√
�d�k�akk��2sk (n)

k�

k�≠k

√
�d�k� �akk� �sk� (n)

+2
√
�d�k�akk��sk (n) gH

k
d (n)

+2
√
�d�k�akk��sk (n)wk (n)

+2gH
k

d (n) �

k�

k�≠k

√
�d�k� �akk� �sk� (n)

+2wk (n) �

k�

k�≠k

√
�d�k� �akk� �sk� (n)

+2gH
k

d (n)wk (n)
�

.

(29)E
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For the third sentence in (28), we have:

In addition, the nonlinear disturbance dm(n) is indepen-
dent of the users’ signals. Thus,

Finally, assuming that the signal and noise are uncor-
related, we have:

As a result, (28) is simplified as follows:

Given that 
∑K

k�≠k
�d�k� �akk� �2�2

∼ is the sum of several sen-
tences, according to the law of large numbers, it can be esti-
mated as E

�
�2�d

∑K

k′≠k
�k′ �akk′ �2

�
 As a result, when K and �d 

are large, ξk can be approximated as follows:

The approximation is acceptable even for small values of 
K, because when K is small, the term 

∑K

k′≠k
�k′ �akk′ �2 is much 

less than �k|akk|2, (in fact |akk′ |2|akk|2 [[16]].
On the other hand, for MR pre‐coding in the Rayleigh 

channel, given that for k′ ≠ k the vectors ak′ and gk are ap-
proximately independent, we have:

This leads to:

Combining (40) with (38), for MR pre‐coding, we have:

Solving (41), the channel gain estimation is as follows:

In contrast to MR pre‐coding, in ZF pre‐coding, ak′ and 
gk vectors are not independent. Therefore, (40) is not valid. 
Instead, the following two facts are used: (1) for the channel 
vector, the estimated value (ĝk) and estimation error (gk − ĝk) 
are independent, which leads to the independence of ak from 
gk − ĝk; and (2) the inner product of ĝk and ak′ is zero, that is, 
ĝH

k
ak� =0. Thus, for ZF pre‐coding, we have:

This leads to

Combination (44) with (41) for the ZF pre‐coding, we have:
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⎧
⎪
⎪
⎨
⎪
⎪
⎩

���� 𝜉k−1−M𝛽k𝛿
2
d
−𝛼2𝜌d

K∑
k�≠k

𝜂k�𝛽k

𝜌d𝜂k𝛼
2

if 𝜉k >1+M𝛽2𝜎
2
d
+𝛼2𝜌d

K∑
k�≠k

𝜂k�𝛽k

E
�
�akk�

�
otherwise.

(43)

E
�
�akk� �2

�
=E

�
�gH

k
ak� �

2
�

=E
�
�(gH

k
− ĝH

k
)ak� + ĝH

k
ak� �

2
�

=E
�
�(gH

k
− ĝH

k
)ak� �

2
�

=
�
𝛽k −𝛾k

�
E
�
‖ak�‖2

�

=𝛽k −𝛾k.

(44)

{
K∑

k�≠k

�k� |akk� |2
}

=

K∑

k�≠k

�k�

(
�k −�k

)
.

(45)

�k ≈�2�d�k�akk�2+M�k�
2
d
+1

+�2�d

K∑
k�≠k

�k�

�
�k −�k

�
.
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So, the estimated value of |akk| is:

Besides, when M is large, the real part of akk is much larger 
than its imaginary part. Therefore, the phase of akk is very small 
and can be approximated with zero [16]. Hence, |âkk|= âkk.

Finally, the proposed algorithm for the downlink channel 
estimation of TDD‐based massive MIMO is summarized in 
Table 2.

5  |   PERFORMANCE ANALYSIS

In this section, the convergence of the proposed method for 
�c →∞ (lead to �d →∞) and M→∞ is investigated for the 
Rayleigh fading channel. For this purpose, for both MR and 
ZF pre‐coding, we rewrite (42) and (46) as

When τc → ∞, according to (27) and (37), we have:

Calculating ξk in (48) and substituting it in (47), we have:

Since τc → ∞, we can assume that the channel estimation for 
uplink is perfect, which leads to Ĝ=G. In this case, for MR 
pre‐coding, we have:

By dividing both sides of (49) by akk, we have:

Using (39) and (50), the above equation is simplified as 
follows:

On the other hand, according to the Cauchy–Schwarz in-
equality, the maximum value of � gH

k
gk′

‖gk′‖
�2 occurs when k = k′. 

Therefore,

In addition,

If M→∞, then ‖gk‖→∞, and hence, (54) will be zero. 
Thus, (52) becomes:

(46)�âkk�=

⎧
⎪
⎪
⎪
⎨
⎪
⎪
⎪
⎩

���� 𝜉k−1−M𝛽k𝛿
2
d
−𝛼2𝜌d

K∑
k�≠k

𝜂k� (𝛽k−𝛾k)

𝜌d𝜂k𝛼
2

if 𝜉k >1+M𝛽2𝜎
2
d
+𝛼2𝜌d

K∑
k�≠k

𝜂k�

�
𝛽k −𝛾k

�

E
�
�akk�

�
otherwise.

(47)�âkk�=

⎧
⎪
⎪
⎪
⎨
⎪
⎪
⎪
⎩

���� 𝜉k−1−M𝛽k𝛿
2
d
−E

�
𝛼2𝜌d

K∑
k�≠k

𝜂k� �akk�2
�
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2
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2
d
+E

�
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�

E
�
�akk� �

�
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(48)
�k − (�d�k�akk�2�2

+

K∑
k�≠k

�d�k� �akk� �2�2

+M�2�
2
d
+1)=0.
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⎧
⎪
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⎩
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if 𝜂k�akk�2+
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�
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�

E
�
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�
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k
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ĝk
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k
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akk
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(52)âkk

âkk
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⎨
⎪
⎪
⎪
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����
1+

K∑
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𝜂k�

𝜂k

���
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k

g
k�

‖g
k�

‖
���
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−𝛽k
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k�≠k
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�
>0
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akk

otherwise.

(53)

����
gH

k
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����

2

−�k

‖gk‖2
≤

����
gH

k
gk

‖gk‖

����

2

−�k

‖gk‖2
.

(54)

����
gH

k
gk

‖gk‖

����

2

−�k

‖gk‖2
=
‖gk‖−�k

‖gk‖2
=

1

‖gk‖
−
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.

(55)
âkk

akk

=

⎧
⎪
⎪
⎨
⎪
⎪
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1

if 𝜂k�akk�2+
K∑

k�≠k

𝜂k�

�
�akk� �2−𝛽k

�
>0

E{�akk�}
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otherwise.

T A B L E  2   Proposed algorithm

In BS

1. Uplink channel estimation using a conventional method

2. Pre‐coding downlink signals using the MR or ZF method

In MS (kth user)

1. Calculated �k using (26)

2. Calculated akk using (42) or (46)
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Lemma   If τd → ∞ and M → ∞, for MR pre‐coding, 
we have:

Proof: Note that:

where the inequality is due to ignoring the positive term ∑K

k′≠k
�k′ �akk′ �2 and the third equality is due to replacing akk 

with (50). In this case, when M→∞, the value of ‖gk‖2 is 
infinite; hence, the above probability equals to one.	      ■

Consequently, for M → ∞, with probability equal to one, the 
first condition in (55) is established, which is equivalent to:

We now prove the convergence in the ZF pre‐coding case. 
For this purpose, we first present the following lemma.

Lemma   If �c →∞, for ZF pre‐coding, we have:

Proof: Given the relations (21) and (26), we have 
a

kk�
=

[GH
Ĝ(ĜH

Ĝ)−1]k,k�

‖[Ĝ(ĜHĜ)−1]‖k�

. For �c →∞, given that Ĝ=G, we 

have:

which is equivalent to (58).			         ■

Then, by replacing (58) in (49), we have:

As a result, similar to MR, in ZF pre‐coding âkk

akk

→1 

Therefore, convergence is obtained with the proposed 
method. Now, the proof is completed.

6  |   SIMULATION RESULTS

In this section, the simulation results are presented to eval-
uate the performance of the proposed method. In all experi-
ments, the results of channel estimation for three methods 
are compared: (a) the estimation method using E

{
akk

}
, 

named as “mean method,” (b) method proposed in [[16]], 
named as “Ngo method,” and (c) our proposed method. For 
each user, we will consider the normalized mean square 
error (MSE) as an evaluation metric, which is defined as:

where âkk represents the estimated value of akk. The results of 
each simulation are the average of 1,000 independent Monte 
Carlo simulation running. The downlink signal‐to‐noise ratio 
(SNRd) and the uplink signal‐to‐noise ratio (SNRu), respec-
tively, are defined as:

and

where MED is the middle amount of large‐scale fading for 
the user located in the middle of the cell.

We consider a circular cell with a radius of Rmax m and 
a BS located in its center. Similar to [16], we assume K + 1 
users located randomly (with uniform distribution) in the cell. 
In addition, we assume that the users’ distances from the BS 
are larger than Rmin m, and the user with the smallest value of 
βk is dropped; Hence, K users remain. The large‐scale fading 
with log‐normal distribution is assumed as follows:

where v is the path loss exponent, dk is the distance of the kth 
user from the BS, PL0 is a path loss constant, and �sh is the 
standard deviation of shadow fading. In the simulation, we 
use K = 10, Rmin = 150, Rmax =1,050, v = 3.8, σsh = 5, PL0 
=1, τu,p = K, and SNRu =0 dB.

In addition, based on the max‐min power control algo-
rithm, we select the power control coefficients as [17]:

Besides, we consider the SEL nonlinear amplifier model, 
where parameters α and �2

d
 are obtained as follows [31]:

Pr

{
𝜂k|akk|2+

K∑

k�≠k

𝜂k�

(
|akk� |2−𝛽k

)
>0

}
=1.

(56)
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�
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�
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�
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�
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𝜂k�𝛽k
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‖gk‖2 >∼
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𝛽k

�
,

(57)
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→1, as M→∞.
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�
1
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0 k≠ k� .
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â

kk

a
kk
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1 if 𝜂

k
|a

kk
|2 >0

E{|akk|}
akk

otherwise
.

(61)MSEk ≜
E
{
|âkk −akk|2

}

{
|akk|2

} ,

(62)SNRd =�d×MED

(63)SNRu =�u×MED,

(64)�k =PL0

(
dk
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)v

×10
�shN(0,1)

10 ,
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1
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�k� +

∑K
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�k�
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(67)
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where σ2 is the nonlinear HPA input signal variance and 
�=Asat∕�. In this paper, the nonlinear HPA parameters are 
α = 0.769 and �2

d
=0.000593, w, which are chosen from table 

I in [[31]]. For a fair comparison of the proposed method with 
the other methods, we assume that the HPA of the reference 
methods in a linear region has the same gain, α.

In the first section of the experiments, the perfor-
mances of three proposed methods are compared for various 
SNRd values, with M = 300 and �d =300. The results for both 
ZF and MR pre‐coding are shown in Figure 2. (In all fig-
ures of this paper, the vertical axis represents the mean of 
the normalized MSEs). As can be seen, by increasing SNRd, 
the MSE of both the proposed and the reference method are 
decreased, while that of the mean method is constant. In ad-
dition, the MSE of the proposed method is less than that of 
the other methods. This result is valid for both MR and ZF 
pre‐codings. For example, in SNRd =10 dB, the MSE of the 
proposed method for MR pre‐coding is −19.79 dB, while that 
for the reference method is −9.81 dB, and for mean method 
is −1.79 dB. The corresponding values for ZF pre‐coding are 
−27.97 dB for the proposed method, −11.46 dB for the refer-
ence method, and −1.79 dB for the mean method.

In addition, the MSE performance of the three methods vs 
SNRd is compared for M = 500 and �d =300 in Figure 3 and for 
M = 300 and �d =500 in Figure 4. As can be seen in Figures 3 
and 4, similar to Figure 2 for the proposed and reference meth-
ods, by increasing SNRd, MSE decreases and the proposed 
method outperforms the mean and reference method in accurate 
channel gain estimation. Especially, the difference in the MSEs 
of the proposed method with that of the reference method is sig-
nificant in lower SNRs, where the nonlinear distortion of HPA 
has a large effect in channel gain estimation in this case. In re-
turn, for the higher values of SNRd, the proposed and reference 
methods approximately have similar performances.

Besides, comparing the ZF and MR pre‐coding results 
show that the performance of channel estimation by using ZF 

pre‐coding is better than that of using MR pre‐coding. This is 
because, for the approximation of E

{
|akk′ |2

}
 in ZF pre‐cod-

ing, we have supposed that for k′ ≠ k the vectors ak′ and gk are 
independent, which is not accurate. In fact, gk′ and ∩ gk are 
approximately (not exactly) independent.

In addition, comparing the results of Figures 2 
and 4, show that for M = 300, in most SNRd, such as 
SNRd =0 dB, 5 dB, 10 dB, and 20 dB, by increasing �d, 
the MSEs of the proposed method are decreased both 
pre‐coding.

In the fifth simulation of the performance evaluation, 
three methods are compared for various values of �d. For this 
purpose, we select M = 100 and SNRd =10 dB. The results 
are shown in Figure 5. In this figure, the horizontal axis rep-
resents the values of �d and the vertical axis represents the 
MSE values. As shown in Figure 5, the performance of the 
proposed method in both pre‐coding is better than that of the 
reference and mean methods. For example, in �d =500, the 
proposed method has the MSE value of −15.21 dB for MR 

F I G U R E  2   MSE vs SNRd for M = 300 and τd = 300
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pre‐coding case, but for the reference and mean methods, 
the above values are −10.6 dB and −1.24 dB, respectively. 
For the ZF pre‐coding case, the MSE values in τd = 500 are 
−25.52 dB, −11.76 dB, and −1.24 dB for the proposed, ref-
erence, and mean methods, respectively. This result shows 
that the performance of the proposed method in both pre‐cod-
ing cases is better than the reference and mean methods.

In the sixth section of the performance test, three 
methods are compared for different antenna numbers. 
For this purpose, we select �d = 1,000, SNRd = 5, and 
M={100, 300, 500, 700, 900}. The results are shown in 
Figure 6, where the MSEs of the channel gain estimation for 
both ZF and MR pre‐coding are seen. As shown in Figure 6, 
the performance of the proposed method in both pre‐coding 
cases is better than that of the reference and mean methods. 
As seen by increasing the value of M, the difference between 
the proposed method and other methods are increased. The 
main reason for this result is that in the presence of nonlin-
ear HPA, according to (30) and (41), the average power of 

the received signal (ξk) is a function of antenna number (M), 
which is not seen in the reference and mean method relations.

Overall, the comparison of all results shows that the 
proposed method has high accuracy channel gain estima-
tion compared to the reference and mean methods. In ad-
dition, a comparison of the results of the proposed method 
for two types of pre‐codings ZF and MR shows that in both 
pre‐coding cases, performance of the proposed method is 
better than that of the reference methods.

7  |   CONCLUSION

In the presence of nonlinear HPA, which is modeled accord-
ing to the Bussgang's theorem, and by using ZF or MR pre‐
coding in the BS, we showed that the signal received to each 
user in multiuser massive MIMO is a summation of the cor-
responding transmitted signal multiplied by the channel gain 
coefficient, other users’ interference, nonlinear distortion, 
and noise. Thus, if the channel gain is known, signal detec-
tion can be performed for each user. Therefore, the channel 
estimation turned into channel gain estimation. By calculat-
ing the average power of the signal received for each user, 
we proposed a new blind method for channel gain estimation 
in TDD‐based multiuser massive MIMO in the presence of 
nonlinear HPA. In the proposed method, the channel gain 
was estimated as a function of large‐scale fading, nonlinear 
distortion variance, and noise variance. The simulation re-
sults showed that the MSE of the proposed method is less 
than that of the reference methods in terms of SNR varia-
tion, antenna number, and coherence symbol number.
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