

<u>플라즈몬 광 핀셋을 사용한</u> DNA 마이크로 패터닝

글 강사 쇼지 타츠야, 교수 츠보이 야스유키/ 오사카시립대학 이학연구과 번역 유정훈/ 그린광학 사업개발그룹장

1. 처음

근년의 바이오센서에 대한 조류는 마이크로칩형 센서일 것이다. 성냥갑정도 사이즈의 글라스 또는 실리콘 등으로 이루어진 고체 기판에 혼합·분리·정재·가열·검출 등의 분석화학의 기본조 작과 기능을 미세하게 집적화한 각종 마이크로칩은 차세대의 유 전자/진단 툴과 면역측정법(immunoassay) 툴로서 크게 기대되 고 있다¹⁾. 예를 들면 칩 중에 효소와 항체, DNA 등의 생체분자를 "통합한"DNA칩과 단백질(protein) 칩은 유전자의 고속 검진과 질환의 신속진단을 가능으로 하는 것에서 그 중요성은 의문의 여 지가 없는 것으로 되고 있고, 대학과 정부기관, 벤처기업 등에 있 어 폭넓게 활발히 연구되고 있다.

DNA칩에 있어서는 일정의 염기배열을 가진 1개 고리의 DNA 를 고체기판상에 도트(스폿)로서 "고정"하고, 이 스폿을 기판상 에 정렬시킨다. 이 스폿에 검체로 되는 1개 고리 DNA를 반응시 키면 어느 검체는 2개 고리 DNA를 형성(Hybridization)하고, 염 기의 미스매칭이 있는 검체 DNA는 2개 고리를 형성하지 않는다. 이와 같은 염기쌍의 매칭을 형광과 반사율변화 등의 광학적 방법 에 의해 검출한다. 즉 이와 같은 분석진단 칩에 있어서는 DNA를 고체기판상에 "고정"하는 것이 필수이다. 그러나 이와 같은 고정 은 기판으로 되는 고체표면과 DNA의 화학구조에 응해 화학/물 리흡착수단을 연구 · 최적화해야 해서 그렇게 쉽지는 않다. 예를 들면 스핀코팅법과 Langmuir-Blodgett(LB)법 등은 대표적인 웻 (wet) 프로세스형의 유기박막 제작수단이지만, 기판과의 친화성 문제 외에도 공간선택적인 미세패터닝이 곤란한 등, 본 목적에 적 합하다고는 말할 수 없다. 이 문제를 해결할 수 있는 것이 차절에 서 말하는 레이저를 사용한 방법이다.

2. 레이저 유기전방전사법(LIFT법)

생체물질의 미세패터닝 고정에는 레이저가 유효하다. 즉, Laser-Induced Forward Transfer(LIFT)법이다. 그림1에 LIFT법의 개략을 나타냈다. 전사하고 싶은 생체물질시료(효소와 DNA 등) 를 레이저에 대해서 투명한 기판상에 담지한다.

담지하는 것에는 생체물질시료의 수용액을 글라스 기판과 석영 기판에 캐스트법에서 필름해서 고정하는 방법이 잘 사용되고 있 다. 이것을 소스기판이라고 하겠다. 이 생체물질을 전사하고 싶 은 별도의 기판(전사기판이라고 부는 것으로 한다)을 소스기판의 생체물질 측을 향해 맞춰 배치한다. 시료필름과 전사기판간의 거 리는 매우 짧아 약 1 mm이하이다. 3차원 구동스테이지상에 이 타킷을 놓는다. 소스기판의 투명지지판 측에서 대물렌즈를 통해 펄스레이저 광을 조사한다. 레이저 조사에 의해 시료필름/기판 의 계면에서 급격한 온도 · 압력상승이 유기되고, 생체물질시료 는 대치한 전사기판을 향해 고속에서 압출되고, 그대로 날아와 서 최적해서 고정된다. 이 온도상승은 "순간적"이기 때문에 생체 물질의 생리활성과 화학구조는 잃어버리지 않고 끝난다고 생각 된다. 대부분의 경우, 조사 모습과 위치는 현미경을 통해 CCD카 메라로 관찰 수 있도록 세트되어 있다. 이와 같이 "DNA가 레이저 광 조사에서 압출되어 비산하는"과정을 시간분해 계측한 관찰 예 2)를 그림2에 나타냈다.

그림중의 시간은 레이저 광조사후에서의 지연시간을 나타낸다. 그림에서 알 수 있듯이 조사한 레이저의 펄스시간 폭에 상관없이 레이저 조사 직후에서 시료의 튐이 관측된다. 이 사진에서 예측한 튐 속도는 초음속인 대략 10³ m/s이고, 사진에는 시료 튐과 함께 전파하는 충격파(펄스상으로 전파하는 강한 음향파)도 관측되고 있다. 튄 시료는 이와 같은 큰 속도(높은 운동에너지)를 가지기 때 문에 대치한 기판상에 충돌했을 때의 화학흡착 · 물리흡착에 의 해 기판상에 고정화된다고 생각된다.

LIFT법은 ①장치구성이 간소하다, ②감압을 필요로 하지 않고, 실 온대기 중에서 행하는 프로세스이다, ③생리활성을 유지하면서 미세스폿의 고정과, 미세패터닝이 가능하다고 하는 이점을 가진 다. 이 때문에 DNA와 효소에서 생긴 세포 그것까지 고정대상물

그림1 레이저 전사법(LIFT)의 개략도

은 폭넓게 연구되어 왔다. 필자들도 LIFT법을 사용해서 유 연한 수지재료인 폴리디메틸실록산(PDMS)기판에 반딧불 의 발광을 담당하는 효소인 루시페라아제를 마이크로 스폿 고정한 것에 성공했다. 이것에 광다이오드를 통합한 마이 크로 분석칩을 시작했다³⁾. 잘 알려져 있듯이 반딧불의 발광 은 루시페린과 ATP(아데노신 삼인산, Adenosine triphosphate)의 반응을 촉매인 루시페라제가 촉진하는 형태로 일 어난다. ATP는 생체 중에 대한 에너지 저장물질이다. 즉 제 작한 마이크로 분석칩은 ATP 검출 센서로서 구동한다. 예 를 들면 식품 중에 뭔가의 미생물이 혼입한 경우, 식품 안 전의 관점에서 큰 문제로 된다. 이때 미생물 존재의 증거 로 되는 것이 ATP이고, 그 검출에는 큰 의미가 있는 것을

Laser printing mechanism studies. (a) A series of stroboscopic $_{65}$ hlieren images of the DNA material ejection at various delay times (printing laser: 500 fs, 248 nm, and 375 mJ/cm²). (b) A series of stroboscopic schlieren images of the ejected DNA material (printing laser: 15 ns, 248 nm, and 375 mJ/cm²).

그림2 레이저 전사에 대한 시료의 튐 모습의 고속 이미징의 예 시료는 DNA이고, 레이저파장은 248 nm. 상단은 펨토초 레이저인 경우이고, 하단은 나노초 레이저인 경우. (elsevier사의 게재허가 하에 문헌2)에서 게재) 이해할 수 있다.

DNA와 효소 등 LIFT법에 의한 생체물질의 미세패터닝은 스위스 의 Lippert 그룹이 활발한 연구를 전개하고 있고, 몇 가지 총설⁴⁾ 로 잘 정리되고 있기 때문에 참조하기 바란다.

3. 광 핀셋에 의한 미소물질의 조작

3.1 광압에 의한 미립자 포착

광 핀셋에서 DNA와 생체물질을 마이크로공간에서 반복, 고체기 판상의 임의 위치에서 접착고정할 수 있으면 LIFT법과 같은 식으 로 이들 마이크로 패터닝을 할 수 있을 것이다. 여기에서는 그 가 능성에 대해서 탐색해 보자. 광이 물질에 닿으면 그 물질에는 광 의 운동량에 기인하는 압력이 동작한다. 이것을 광압과 복사압이 라고 한다. 광압은 물론 맥스웰 방정식에서 이끌어지는 전자기학 적인 힘이다. 이 힘을 사용해서 미립자를 "포착하는"것에 성공한 것은 AT&T 벨연구소의 Ashkin박사 등이다. 1985년 이후, 그들 은 마이크로공간에서 단일 세포와 글라스비즈를 근적외 레이저 빔에서 포착하고, 공간적으로 조정하는 광 머니퓰레이션법(=광 핀셋)을 개발했다⁵⁾. 이것을 계기로 광 핀셋은 급속히 그 활약의 장을 생물학, 화학, 물리학 등 분야의 장벽을 넘어 넓어졌다. 지 금에서는 이와 같은 광 핀셋장치는 국내외 메이커의 여러 회사에 서 이미 시판되고 있다.

미립자의 광 포착 원리는 미립자가 광파장보다도 큰 Mie 산란 영역에서는 광자의 운동량보존법칙에서 직관적으로 이해된다. 한편 단백질과 DNA와 같은 생체물질은 포착에 사용하는 레이 저 파장보다도 충분히 적어 Rayleigh 산란영역으로 된다. 이때 미립자는 광의 전장 중에 존재하는 전기쌍극자p로 볼 수 있고, 이 쌍극자가 광의 전자장(*E*,*B*)에서 받는 로렌츠 힘*F*가 광압의 기원으로 된다.

$$F = \frac{1}{2}\alpha \nabla E^2 + \alpha \frac{\partial}{\partial t} (E \times B)$$
(1)

α는 매질 중에 대한 나노미립자(분자)의 분극률이고, 이하와 같

이 표시된다.

$$\alpha = 4\pi\varepsilon_2 r^3 \frac{(n_1/n_2)^2 - 1}{(n_1/n_2)^2 + 2}$$
(2)

여기

에서 r은 나노미립자의 반경, n₁, n₂는 각각 미립자 및 매질의 굴 절률이고, ɛ₂는 매질의 유전률이다. 식(1) 우변의 제1항이 구배 력(F_{grad})이고, n₁ > n₂일 때, 미립자를 광 전장의 강한 영역으로 유치하는 광압으로서 동작한다. 레이저 빔이 Gaussian 강도분 포를 가진다면 미립자는 초점 중심으로 유치되고 포착된다. 제 2항은 산란력(척력)이고, 제1항의 광압(인력)에는 버틸 수 없어 무시할 수 있다.

광압의 포텐셜 $U_{\text{trap}} \in F_{\text{grad}} = -\nabla U_{\text{trap}}$ 에서 이하와 같이 표시된다.

$$U_{trap} = -\frac{1}{2}\alpha E^2 \tag{3}$$

이 광압포텐셜이 배경의 열 흔들림 에너지(*kT*)보다도 한자리정 도는 크지 않으면 안정한 포착은 할 수 없다. 즉 안정한 포착을 위 해서는 *U*_{trap}에 관계되는 광 전장의 절대값을 크게 해서 광압 퍼 텐셜을 깊게 해야 한다. 식(3)에 의하면 광압의 퍼텐셜은 미립자 의 분극률 a에 비례해서 깊게 되고, 식(2)에서 분극률 a는 분자 체 적($\propto r^3$)에 비례한다. 즉 큰 미립자에는 광압은 강하게 작동하지 만, 적은 미립자에서는 광압퍼텐셜은 얕게 되고, 약하게 밖에 작 동하지 않는다. 미립자 직경이 1/10로 적게 되면 광압 크기는 1/1000으로 되어 버린다.

나노스케일 분자계의 광 포착이 어려운 이유는 여기에 있다. 물 안에 떠도는 단백질과 DNA를 포착하려면 아무리 강한 레이저빔 을 모아도 안정한 포착은 꽤 어렵다. 이들 시스템에서는 실험조 건에도 의하지만, 두 자리이상 광압이 부족한 것이 필자들이 실 감했다. 실제 DNA의 광 조작에서는 수용액중의 DNA를 그대로 레이저 포착하는 것은 어렵다. 통상은 DNA의 양 말단에 미립자 (스트렙토아비딘에서 코팅한 마이크로비즈)를 비오틴결합에서 접착하고, 이 마이크로비즈를 광 핀셋으로 조작하는 방법이 오래 동안 사용되어 왔다⁶⁾. 그러면 광 핀셋에서는 DNA는 마이크로비 즈 없이 직접 조작할 수 없을까? 그것을 위해서는 광 핀셋의 압력 인 광압을 비약적으로 높일 필요가 있고, 그것을 가능으로 하는

것이 차절에서 소개하는 플라즈몬 광 핀셋이다.

3.2 플라즈몬 광 핀셋

광압을 나타내는 식(3)에서 광압을 크게 하는 것에는 광 전장 *E*를 증대시키는 것이다. 그 때문에 플라즈몬의 광 전장 증강효과를 이 용하는 것이 "플라즈몬 광 핀셋"이다. 귀금속중의 자유전자의 협 동적 집단진동을 "플라즈몬"이라고 한다. 금과 은 등의 귀금속미 립자에 공조광(녹색과 적색 광)을 조사하면 이 플라즈몬의 잔물 결을 세울 수 있다. 특히 복수의 귀금속 나노입자가 나노미터사이 즈(20 nm이하)의 공극(나노 갭)을 거쳐 배치되어 있는 듯한 구조 에서는 공조광(대부분의 경우, 적색 ~ 근적외영역에 파장을 가짐) 의 조사에 의해 진동전장은 나노 갭에 현저히 국재 한다. 이것을 갭 모드 국재표면 플라즈몬이라고 한다. 나노 갭에서는 입사공조 광에 비해 그 전장강도 *E*²는 수천 배 이상으로까지 증강한다. 단, 전장이 미치는 범위도 현저히 좁다(국재). 또 나노구조에 국재하 기 때문에 그 전장구배⊽ *E*²는 급격히 큰 값으로 된다. 따라서 식 (1)~(3)에서, 이 공명여기 되어 있는 나노 갭 근방에 나노입자가 오면 그 나노입자에는 강한 광압이 동착해서 포착된다. 이것이 플 라즈몬 광 핀셋의 구동원리이다. 이 개념도를 그림3에 나타냈다. 이와 같은 갭 모드 국재표면 플라즈몬을 이용한 광 포착은 많이 보고되고 있다⁷⁾. 종래형의 집광레이저빔을 사용한 광 핀셋에 비 해 이 플라즈몬 광 핀셋은 다음과 같은 우수한 이점을 가진다.

(i) 포착력이 강하다: 10⁵배 가까이 플라즈몬 전장증강효과와 나노공간에 국재하는 급격한 전장구배 때문에 강한 광압이 나노입자에 작용된다(식(1)~(3)). 그 때문에 지금까지의 고 출력 레이저 광원을 필요로 하지 않고, 레이저포인터와 같은 수mW정도 출력의 레이저빔을 현미경에 집광하면 충분히 서브미크론의 미립자를 포착할 수 있다.

- (ii) 포착의 공간분해능이 높다: 증강한 광압이 작용하는 공간은
 광전장이 국재하는 10 nm정도의 나노공간이기 때문에 미
 립자는 이 나노공간 내에만 포착된다.
- (iii) 자유도가 증가하는 것: 귀금속 나노구조의 디자인에 의해 회 절한계보다 훨씬 적은 공간에서 광압에 기초하는 포착퍼텐 셜을 복잡하게 설계하는 것이 가능하다. 또 광의 집광과 궤 도각운동량 등이 금속나노구조상에서 광압에 어떻게 전사 될지 흥미 깊은 문제도 풍부히 내포하고 있다.

플라즈몬 광 핀셋은 매력적인 미래지향의 연구대상이다. 우리들 은 독자로 개발한 현미분광스코프부착 플라즈몬 광 핀셋시스템 을 개발하고, 주로 분자계 나노물질(DNA, 합성고분자, 양자도 트, 폴리머비즈 등)을 대상으로 하고, 그 포착거동, 메커니즘 해 명에 주력해왔다.

3.3 DNA의 플라즈몬 광 포착과 마이크로 패터닝

우리들은 글라스구 등의 미립자가 결합하고 있지 않는 DNA 그 것의 플라즈몬 광 포착에 세계에서 최초로 성공하고 DNA고유 라고 생각되는 특징적인 포착거동을 발견했다. 그 상세를 여기 에서 말하겠다[®].

완충용액중의 박테리오파지 λ-DNA(48 kbp)를 형광색소 YOYO-1(형광파장 509 nm)에서 염색해서 포착용의 시료로 했 다. 플라즈몬 발생장으로서 근적외영역에 흡수를 가지는 금 나 노 피라미드 이합체가 규칙적으로 집적 배열한 글라스 기판을 사용해서 DNA용액과 접촉시켰다. 이 금 집적기판은 Angle-Resolved Nanosphere Lithography라고 불리는 방법에서 제작할 수 있다⁹. 금 나노 피라미드 이합체는 나노 갭을 거쳐 배치되고, 대략 800 nm부근에 극대를 가지는 폭넓은 갭 모드 국재 플라즈 몬 공명대를 나타낸다.

플라즈몬 여기광원으로서 연속발진(CW)형 파장 808 nm의 근 적외레이저, 형광여기광원으로서 CW파장 473 nm 레이저를 사 용했다. 두 개의 레이저빔을 동축에서 도립형 광학현미경에 도입 하고, 초점위치부근에 대한 DNA의 포착거동을 명시야 현미경관 찰과 현미형광관찰에 의해 추적했다.

상술의 연속발진(CW)형의 808 nm 레이저에서 금 나노 피라미

드의 플라즈몬을 여기하면 그림4(a)에 나타냈듯이 시료용액중 의 DNA는 포착되고, 초점위치에 링상의 형광패턴이 관찰되었 다. 링 위치는 플라즈몬 여기영역의 바깥테두리에 일치해서, 플 라즈몬 증강광압에 의해 DNA가 효율적으로 포착되어 있는 것을 알 수 있다. 포착된 DNA가 여기영역전체에 포착되는 것은 아니 고, 이와 같은 링상으로 되는 기원은 후술한다.

여기에서 DNA특유의 포착현상을 발견했기 때문에 상세히 말 하겠다. 통상, 광 핀셋에서는 광 조사를 정지하면 그것까지 포착 된 미립자는 브라운운동에 의해 빠르게 포착위치에서 소실한다. 그런데 이 플라즈몬 광 핀셋에서는 플라즈몬 여기를 정지해도 DNA는 소실하지 않고 나노구조기판에 반영속적으로 링 패턴상 으로 고정되었다. 이 고정은 DNA와 글라스표면의 정전상호작 용에 의한 흡착이 원인이라고 생각된다. 이것에 의해 광 조사 스 폿만에 DNA를 고정하는 마이크로 링 패터닝에 성공했다(그림 4(b)에 "A"의 글자를 패터닝했다).

여기에서 이 DNA의 흡착고정이 링을 형작하는 기구를 고찰하 자. 우리들 연구에 의하면 플라즈몬 여기에 의해 여기영역근방 의 온도는 상승한다(금속 중의 전자-격자완화에 의함). 그 결과 이 플라즈몬 포착에는 전부해서 4개 힘이 동작하는 것을 알았다 ¹⁰. 즉, (i) 플라즈몬 여기범위 내에 끌어당기는 전자기학적인 힘(증강광압), (ii) 급격한 온도구배(~1 K/』៣)에 기초해서 DNA 를 플라즈몬 여기범위 외로 끌어내는 척력(열영동력, 또는 Soret 효과라고도 한다), (iii) DNA를 원방에서 광압이 동작하는 범위 로 수송하는 힘(열대류), (iv) 플라즈몬 발생장과 DNA의 상호작 용(쿨롱력)의 네 가지이다. 이것들이 협동적으로 동작하는 것을 명확히 해서 DNA는 링상으로 포착·고정화되는 모델을 제안 하고 있다. 그리고 이것들의 정량평가도 행하고 있다. 예를 들 면 증강광압과 열영동력 에너지는 10¹⁹]정도에서 버티는 것이 명확히 되었다.

즉 DNA의 포착·고정과정은 이하와 같이 정리할 수 있다.

Step 1: 플라즈몬 여기에서 열대류가 발생하고, 수용액중의 DNA는 플라즈몬 여기영역내로 수송되어 온다.

그림4 (a) 플라즈몬 광 핀셋에 의한 DNA 광 포착. 그림 중의 흰 원(점선)은 광 여기영역을 나타낸다. (b) 좌: 플라즈몬 광 핀셋에 의한 DNA의 마이크로 링 고정의 형광화상. 우: DNA 마이크로 링에서 "A"의 패터닝. (미국화학회의 게재허가 하에 문헌8)에서 게재)

Step 2: 그 DNA는 플라즈몬 증강광압에 의해 금 나노 피라미 드 기판표면으로 끌어당겨진다. 단 열영동의 척력에 의해 포착 은 조해되고, DNA는 금 나노 구조표면에서 약하게 속박되어 흔 들리고 있다.

Step 3: 약하게 속박된 DNA는 열영동력에 의해 여기영역의 중심 부분에서 바깥테두리를 향해 서서히 수송된다(열영동력은 DNA 에 대해서는 "뜨거운 영역"에서 "차가운 영역"을 향해 수송하는 힘 으로 된다). 그 결과 DNA는 링형의 집합체를 형성한다.

Step 4: 그 링형의 DNA집합체는 플라즈몬 증강광압에 의해 금 나노 구조표면으로 끌어당겨지고, 동시에 기판표면에 노출한 글 라스부분에 정전력에 의해 흡착 고정되고, 최종적으로 DNA의 마 이크로 링 고정이 행해진다.

우리들은 몇 개 링 길이가 다른 DNA에 대해서 이와 같은 플라즈 몬 광 포착을 행하고, 같은 식으로 마이크로 링 고정패터닝을 할 수 있는 것을 확인했기 때문에 상기의 메커니즘은 DNA 일반에 대해서 성립한다고 생각된다. 이와 같이 생체분자를 플라즈몬 발 생장에 패터닝할 수 있으면 바이오센서 제작의 응용도 기대할 수 있다. 이들 힘을 제어하는 것에 의해 DNA를 임의 위치에서 포 착·고정화할 수 있다고 기대할 수 있다.

한편, CW형이 아니라 펨토초 초단펄스발진 레이저에서 플라즈 몬을 여기하면 이번에는 DNA는 폴리머비즈에서 관찰되었듯이 "trap-and-release"형의 포착거동을 나타냈다(플라즈몬 여기시 만 DNA가 포착된다). 즉 플라즈몬의 광여기모드를 CW펄스로 절환하는 것에서 고정형이든지 "trap-and-release"형으로 포착 거동을 스위치 할 수 있다. 이것은 현재, 우리들의 DNA에서만 달 성되어 있는 유니크한 광 포착이다. 플라즈몬 광여기 에리어에서 의 강한 전장 내와 열효과에 의해 DNA 분해가 걱정되지만, 결과 적으로 말하면 이것은 걱정 없다. 플라즈몬 여기에 동반하는 온도 상승은 10-20 K정도로 DNA의 이중고리가 풀리는 것은 없다. 만 약 풀리면 형광색소가 DNA에서 벗어나기 때문에 형광에서 관찰 할 수 없게 되지만, 그와 같은 것이 없이 형광상에서 명료히 DNA 가 고정화되어 있는 것을 확인했다.

4. 결론

이상, 주로 우리들의 플라즈몬 광 포착에 기초하는 DNA 포착과 마이크로 패터닝에 관해서 그 특징과 기구를 말했다. 보다 상세하 게는 최근의 해설논문^{11,12)}도 더불어 참조하기 바란다. 플라즈몬 광 포착법은 고휘도 펄스레이저를 사용하는 LIFT법에 비해 마일 드한 조사조건에서 행할 수 있고, 열과 광에 터프라고는 할 수 없 는 생체물질에 본질적으로 적합하다. 또 타깃층을 작성할 필요도 없고, 다이렉트로 수용액에서 패터닝 할 수도 있다. 그 한편, 플라 즈몬 광 포착법은 글라스표면에 관해서 흡착하는 성질이 있는 물 질이 아니면 고정할 수 없고, 생체물질 전반에 범용성이 있다고 는 할 수 없어, 현재 DNA만에 적용이 한정되어 있다. 이 점을 이 후는 추급해 간다.

플라즈몬 광 포착은 실험적인 첫 성공으로부터 꼭 10년이라는 비 교적 젊은 과학기술분야이고, 지금까지는 현상론과 기구 해명의 연구가 주류였다. 지금부터는 응용분야의 탐색과 기술로서의 확 립으로, 서서히 연구 트렌드가 시프트 해 간다고 생각한다. 그 응 용발전을 위해서도 이 원고가 연구자와 엔지니어 분들의 상상력 자격에 조금이라도 도움 될 수 있는 것을 희망한다.

본 연구는 오사카시립대학 대학원이학연구과의 대학원생이었 던 이토우 켄타군과 홋카이도대학 이학연구과의 키타무라 노보 루교수그룹, 무라코시 케이교수그룹과의 공동연구 성과이다. 여 기에서 깊이 감사드린다. 본 연구의 일부는 과연비 · 신학술영 역 "광압에 의한 나노물질조작과 질서의 창생"(JP16H06506/ JP16H06507)에서 지원을 받아 추진되었다.

참고문헌

- 1. 北森武彦 監修:"インテグレーテッド・ケミストリー"(シーエムシー出版, 2004).
- 2. I. Zergioti, A. Karaiskou, D. G. Papazoglou, C. Fotakis, M. Kapsetaki, D. Kafetzopoulos: Appl. Surf. Sci. 247, 584 (2005).
- 3. Y. Tsuboi, Y. Furuhata, N. Kitamura, Appl. Surf. Sci., 253, 8422 (2007).
- 4. A. Palla-Papavlu, V. Dinca, C. Luculescu, J. Shaw-Stewart, M. Nagel, T Lippert, and M Dinescu, J. Opt. 12 (2010) 124014.
- 5. A. Ashkin and J. M. Dziedzic: Science 235 (1987) 1517.
- Allen H. J. Yang, Sean D. Moore, Bradley S. Schmidt, Matthew Klug, Michal Lipson, & David Erickson, Nature 457, 71 (2009).
- 7. T. Shoji and Y. Tsuboi, J. Phys. Chem. Lett., 5, 2957 (2014).
- T. Shoji, J. Saitoh, N. Kitamura, F. Nagasawa, K. Murakoshi, H. Yamauchi, S. Ito, H. Miyasaka, H. Ishihara, and Y. Tsuboi, J. Am. Chem. Soc., 135, 6643 (2013).
- 9. Christy L. Haynes et al. and Richard P. Van Duyne, J. Phys. Chem. B, 2002, 106 (8), pp. 1898-1902.
- 10. Y. Tsuboi, Nature Nanotechnology, 11, 5 (2016).
- 11. 東海林竜也, 坪井泰之, 応用物理, Vol. 86 (1), (2017) p. 45-49.
- 12. 坪井泰之, 東海林竜也, 現代化学, No. 555 (6月号) (2017) pp.50-54.