References
- M. Dash and H. Liu, Feature selection for classifications, Intell. Data Anal. 1 (1997), 131-156. https://doi.org/10.3233/IDA-1997-1302
- I. Guyon and A. Elisseeff, An introduction to variable and feature selection, J. Mach. Learn. Res. 3 (2003), 1157-1182.
- A. L. Blum and P. Langley, Selection of relevant features and examples in machine learning, Artif. Intell. 97 (1997), 245-271. https://doi.org/10.1016/S0004-3702(97)00063-5
- H. H. Hsu, C. W. Hsieh and M. D. Lu, Hybrid feature selection by combining filters and wrappers, Expert Syst. Appl. 38 (2011), 8144-8150. https://doi.org/10.1016/j.eswa.2010.12.156
- J. Wang et al., Maximum weight and minimum redundancy: a novel framework for feature subset selection, Pattern Recognit. 46 (2013), 1616-1627. https://doi.org/10.1016/j.patcog.2012.11.025
- B. Liu et al., Discrete biogeography based optimization for feature selection in molecular signatures, Mol. Inf. 34 (2015), 197-215. https://doi.org/10.1002/minf.201400065
- Y. Samaneh, J. Shanbehzadeh, and E. Aminian, Feature subset selection using constrained binary/integer biogeography based optimization, ISA Trans. 52 (2013), 383-390. https://doi.org/10.1016/j.isatra.2012.12.005
- V. Bolon‐Canedo et al., Statistical dependence measure for feature selection in microarray datasets, in Proc. Eur. Symp. Artif. Neural Netw. ‐ESANN, Bruges, Belgium, Apr. 27-29, 2011, pp. 23-28.
- P. Meyer, C. Schretter, and G. Bontempi, Information‐theoretic feature selection in microarray data using variable complementarity, IEEE J. Sel. Top. Signal Process. 2 (2008), 261-274. https://doi.org/10.1109/JSTSP.2008.923858
- L. Song et al., Feature selection via dependence maximization, J. Mach. Learn. Res. 13 (2012), 1393-1434.
- X. Li and M. Yin, Multi‐objective binary biogeography based optimization for feature selection using gene expression data, IEEE Trans. Nano Biosci. 12 (2013), 343-353. https://doi.org/10.1109/TNB.2013.2294716
- A. Sharma, S. Imoto, and S. Miyano, A top‐r feature selection algorithm for microarray gene expression data, IEEE/ACM Trans. Comput. Biol. Bioinform. (TCBB) 9 (2012), 754-764. https://doi.org/10.1109/TCBB.2011.151
- S. Thawkar and R. Ingolikar, Classification of masses in digital mammograms using Biogeography‐based optimization technique, J. King Saud Univ. Comp. Inf. Sci. (2018), https://doi.org/10.1016/j.jksuci.2018.01.004.
- M. S. Mohamad et al., A modified binary particle swarm optimization for selecting the small subset of in‐formative genes from gene expression data, IEEE Trans. Inf. Technol. Biomed. 15 (2011), 813-822. https://doi.org/10.1109/TITB.2011.2167756
- K. Kira and L. Rendell, The feature selection problem: Traditional methods and a new algorithm, in Proc. Tenth Natl Conf, Artif. Intell., AAAI Press/The MIT Press, Menlo Park, 1992, pp. 129-134.
- M. Dash, H. Liu, and H. Motoda, Consistency based feature selection, in Proc. Fourth Pacific Asia Conf. Knowl. Discov. Data Min., Springer‐Verlag, 2000, pp. 98-109.
- M. Hall, Correlation based feature selection for machine learning, Ph.D. Thesis, Univ. Waikato, Dept. Comp. Sci. (1999).
- L. Yu and H. Liu, Feature selection for high‐dimensional data: a fast correlation‐based filter solution, in Proc. Twentieth Int. Conf. Mach. Learning ICML, Washington, DC, USA, Aug. 21-24, 2003, pp. 856-863.
- C. E. Sarndal, A comparative study of association measures, Psychometrika 39 (1974), 165-187. https://doi.org/10.1007/BF02291467
- H. Joe, Relative entropy measures of multivariate dependence, J. Am. Stat. Assoc. 84 (1989), 157-164. https://doi.org/10.1080/01621459.1989.10478751
- C. A. Shannon, A mathematical theory of communication, Bell Syst. Tech. J. 27 (1948), 379-423. https://doi.org/10.1002/j.1538-7305.1948.tb01338.x
- I. H. Witten and E. Frank, Data Mining: Practical Machine Learning Tools with Java Implementations, Morgan Kaufmann, San Francisco, CA, 2000.
- T. Li, C. Zhang, and M. Ogihara, A comparative study of feature selection and multiclass classification methods for tissue classification based on gene expression, Bioinformatics 20 (2004), 2429-2437. https://doi.org/10.1093/bioinformatics/bth267
- Z. Zhu, Y. S. Ong, and M. Dash, Markov blanket‐embedded genetic algorithm for gene selection, Pattern Recognit. 49 (2007), 3236-3248.
Cited by
- Machine Learning Based Computational Gene Selection Models: A Survey, Performance Evaluation, Open Issues, and Future Research Directions vol.11, 2019, https://doi.org/10.3389/fgene.2020.603808
- Incremental Search for Informative Gene Selection in Cancer Classification vol.5, pp.2, 2019, https://doi.org/10.33166/aetic.2021.02.002