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1 | INTRODUCTION

Recently, deep neural network (DNN) models based on
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We devise a layer-wise hint training method to improve the existing hint-based
knowledge distillation (KD) training approach, which is employed for knowledge
transfer in a teacher-student framework using a residual network (ResNet). To
achieve this objective, the proposed method first iteratively trains the student
ResNet and incrementally employs hint-based information extracted from the pre-
trained teacher ResNet containing several hint and guided layers. Next, typical
softening factor-based KD training is performed using the previously estimated
hint-based information. We compare the recognition accuracy of the proposed
approach with that of KD training without hints, hint-based KD training, and
ResNet-based layer-wise pretraining using reliable datasets, including CIFAR-10,
CIFAR-100, and MNIST. When using the selected multiple hint-based informa-
tion items and their layer-wise transfer in the proposed method, the trained stu-
dent ResNet more accurately reflects the pretrained teacher ResNet's rich
information than the baseline training methods, for all the benchmark datasets we
consider in this study.
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complex networks is useful for improving the training abil-
ity of the simpler networks. Therefore, to extend the appli-
cation of DNN models to improving classification

convolutional neural networks (CNNs) [1], such as Alex-
Net [2], GoogleNet [3], VGGNet [4], and the residual net-
work (ResNet) [5,6], have produced promising results,
particularly in the field of computer vision. Applications
using state-of-the-art DNN models continue to expand
[7-19]. However, DNN models have a deep and wide neu-
ral network structure with a large number of learning
parameters that must generally be optimized. Thus, the
direct reuse of pretrained DNN models is limited in many
applications, such as the Internet of Things environment
[20]. Knowledge extracted from a complex pretrained net-
work and its efficient transfer to other, relatively less

accuracy, rapidly obtaining inference times, and reducing
network sizes for limited-computing environments, efficient
knowledge extraction, and knowledge transfer techniques
are crucial.

To achieve these requirements, several studies on
knowledge distillation (KD) and knowledge transfer in a
teacher-student framework (TSF) have been conducted in
recent years [21-25]. Li and others [21] proposed a
knowledge transfer method using a network output distri-
bution based on Kullback-Leibler (KL) divergence in
speech recognition tasks. Based on model compression
[26], the researchers trained a small student network by
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matching the class probabilities of a large pretrained tea-
cher network. This approach was implemented by mini-
mizing the KL divergence of the output distribution
between the teacher and student networks. In relation to
[21], Hinton and others [22] introduced KD terminology
from the TSF. Unlike in [21], Hinton and others intro-
duced relaxation by applying a softening factor to the sig-
nal, originating from the teacher network's output. This
approach can provide more information to the student net-
work during training. Therefore, the softened version of
the final output of the teacher network is regarded as the
teacher's KD information, which small student networks
strive to learn. Romero and others [23] proposed a hint-
based KD training method in a TSF called FitNet, which
improved the earlier KD training performance by intro-
ducing hint-based training, in which a hint is defined as
the output of a teacher network's hidden layer. This
method enables the student network to learn additional
information that corresponds to the teacher's parameters
up to the hint layer, as well as existing KD information.
The trained deep and narrow VGGNet-like student net-
work can then provide better recognition accuracy with
fewer parameters than the original wide and shallow max-
out [24] teacher network, owing to this stage-wise training
procedure. In addition, Net2Net [25] was proposed for the
rapid transfer of knowledge from a small teacher network
to a large student network. In [25], a function-preserving
transform was applied to initialize the parameters of the
student network based on the parameters of the teacher
network.

This study aims to improve the recognition accuracy of
hint-based KD training for effective knowledge transfer. To
achieve this objective, we propose a layer-wise hint-train-
ing TSF that uses multiple hint and guided layers. First,
multiple hint layers in the teacher network—and the same
number of guided layers in the student network—are
selected. Next, the student network is iteratively and incre-
mentally trained from the lowest guided layer to the high-
est guided layer with the help of the teacher's hints from
multiple selected hint layers. Finally, the student network
learns further using multiple hints extracted from the previ-
ous step and existing KD information from the teacher's
softened output [22]. To verify the effectiveness of the pro-
posed training approach, we employ ResNet with the latest
DNN model for all training methods, where the teacher
ResNet is deeper than the student ResNet. Therefore, we
focused on knowledge transfer to improve the performance
of a small student network by extracting distilled knowl-
edge from a deep teacher network. For our experimental
analysis, we employed Caffe [27,28], which is a reliable
deep-learning open framework.

Meanwhile, the proposed training approach can be
regarded as a layer-wise CNN-based pretraining scheme [29],
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in terms of training the student network, because multiple
hints extracted from the pretrained teacher network are propa-
gated layer-by-layer into the student network. Therefore, we
also compare the recognition accuracy of the proposed
method with that of layer-wise pretraining using ResNet.

The remainder of this paper is organized as follows: In
Section 2, we detail the proposed TSF using layer-wise
hint training. In Section 3, we demonstrate the recognition
accuracy of the proposed training approach through experi-
mental results on several widely used benchmark datasets.
In Sections 4 and 5, respectively, we present a discussion
of our results and our conclusions.

2 | TRAINING IN A TEACHER-
STUDENT FRAMEWORK

2.1 | Original training algorithm for
knowledge transfer

In this section, we employ an existing hint-based KD train-
ing method [23] to introduce the proposed training
approach using multiple hint and guided layers, specifically
when ResNet models with the same spatial dimensions are
used in a TSF. The traditional knowledge transfer scheme
is composed of two stages: hint training and KD training.
First, hint training is achieved by minimizing the following
I loss function [23]:

(Wg) = arg | min% [F59(x; Wy) — FR9(x Wo) |2, (D)
G

where Wy are the weights of a teacher ResNet up to the
selected hint layer, W are the weights of a student ResNet
up to the selected guided layer, and FEid and Fgﬂd represent
N, feature maps (€ #"*M) generated from their respective
hint and guided layers with Wy and W. Here, N, and N,
are the height and width of the feature map. Note that each
hint and guided layer is selected as the middle layer of the
teacher and student ResNets, respectively.

After hint training, the extracted WG is used to con-
weights of the ResNet,
W = [WG; WS,] , where Wg, denotes the remaining
weights of the student ResNet, which are randomly initial-
ized from the guided layer to the output layer.

Second, after initially loading all weights Wy of the stu-
dent ResNet, KD training using the softening factor (t) is
implemented by minimizing the weighted sum of the two
cross entropies [22,23]:

struct the initial student

(Wy) = g min{CE(yLme,PS)|WS n /1CE(PT7PS)|WS}7 2)
N

where CE( - ) denotes cross entropy, A indicates a control
parameter that adjusts the weight between the two CEs,
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Pr = softmax(p,/7), Ps= softmax(p;/7), and p, and
ps are the pre-softmax outputs of the teacher and stu-
dent ResNets, respectively. Based on the recommended
range of 2.5 to 4 for t [22,23], we set T =3 for all
experiments.

2.2 | Proposed training algorithm for
knowledge transfer

In this section, we introduce a layer-wise hint training
method based on the existing hint-based learning approach
to enhance the knowledge transfer capability in the TSF.
The goal of the proposed approach is to perform layer-wise
training among multiple hint and guided layers, unlike the
original method, which uses only the intermediate hint and
guided layers. In other words, knowledge transfer across
multiple hint and guided layers is achieved using repeated
incremental bottom-up training between the teacher and
student networks.

Based on (1), the proposed hint training procedure using
N hint/guided layers (layers Hi—G;, i=1, 2, ..., N) is
detailed as follows (Stage 1):

Step 1: Estimate weights WGI from the first hint/guided
layers (H;—Gy) by solving the optimization problem in (3).

(We) = argmin 3 [} (x: W) — B W ),
G

where Wy, are the teacher ResNet's weights up to layer
H,, Wg, are the student ResNet's weights up to layer G,
and the initial weights Wg, = Wg,. Wy comprise ran-
domly initialized weights from the input layer to layer G;.

Step 2: Estimate weights WGZ from the second hint/
guided layers (H,—G,) using the previously estimated
weights WG] (Wg, CWg,), as follows:

(We,) = argmin [, (o W) — P W) 3, @)
Gp
where Wy, are the teacher ResNet's weights up to layer
H,, Wg, are the student ResNet's weights up to layer G,
and the initial weights Wg, = [Wg,; Ws,]. Ws, denotes
randomly initialized weights between layers G; and G;.
Step i: Estimate weights VVG,, up to the ith guided layer
with (5) from the ith hint/guided layers (H;—-G;).

. 1
(Wg,) = arg min > |F% (x; Wh,)

WG:‘

—FL(;We)l3, ()

where Wy, are the teacher ResNet's weights up to the
selected layer H;, W, are the student ResNet's weights up
to the selected layer G;, F%, denotes the ith feature maps
generated from the ith hint layer using weights Wy, FL
denotes the ith feature maps generated from the ith guided
layer using weights Wg,, and WG‘. are the ith estimated

weights using the previously identified (i — 1)th weights
W, ,, as

We, = [Wg, ,; Ws,], Wg,, cWa,, ©)

where Wy, represents randomly initialized weights from the
(i — 1)th guided layer to the ith guided layer. The previous
steps are then repeated until the last weights WGN, up to
the Nth guided layer (Gy), are found. As per this proce-
dure, each hint training is performed incrementally from
the bottom to the top by minimizing the corresponding I,
loss function. Through iterative and layer-wise hint train-
ing, the teacher network's rich information can be delivered
more precisely to the student network than the original
training approach of simply considering the teacher net-
work's intermediate result.

Next, we implemented a softening factor—the t-based
KD training from (2) (Stage 2 in the proposed method)—
using all initial weights Wy = [WGN;WS,_], where WGN
consists of weights obtained from the proposed layer-wise
hint training procedure, and Wy, comprises randomly ini-
tialized weights from the Nth guided layer to the output
layer. We set T = 3 for all experiments. Figure 1 presents a
description of the proposed approach to using multiple
hints for knowledge transfer in the TSF.

3 | EXPERIMENTAL RESULTS

In this section, we evaluate the performance of the pro-
posed method for knowledge transfer in the TSF. For sev-
eral benchmark datasets, we compare the recognition
accuracies of the proposed method and that of existing
TSF-based training methods. All experiments used a

Imitialization: i = 0. select NV hint and guided layers. and set the
initial Wg to 2.
Main Stages: Stage 1 — Stage 2
* Layer-wise Hint Training (Stage 1): Increment 7 by 1 and perform

the following steps until the last parameters WG_\_ are found.

1) Estimate the i parameters WQ with (5) by using the
previously estimated parameters up to (i—1)™ guided layer.
2) Configure the initial parameters Wg = [WG' ‘W } with
(6) for the next (i+1)™ hint training.
* KD Training (Stage 2): Perform the KD training of (2) by using
the initial overall parameters W, = [V“VGX ;WSJ and t—based
KD information.
Output: The proposcd solution compriscs all cstimatcd parameters
w ¢ for the student network that was obtained by step-by-
step hint training.

FIGURE 1 Description of the proposed iterative layer-wise hint
training method in a TSF
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ResNet model with a total of 6n + 2 stacked weighted lay-
ers (n = 1, 2, etc.) as the base architecture [5] (Figure 2).

Note that the ResNet structure is realized using feedfor-
ward neural networks with shortcut connections (used to
make an ensemble structure that enables training overly
deep networks by enhancing information propagation) and
batch normalization (BN) [30].

The ResNet considered in this study has three sections
in which the feature map dimensions and number of filters
are changed. For example, as shown in Figure 2, the first

:
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*conv: Convolutional layer
*avg. pool: Global average pooling layer
*FC: Fully-connected layer

(A)

@ *Note:

lReLU - BN: Batch normalization
- ReLU: Rectifier linear unit

(B)

FIGURE 2 TSF using a state-of-the-art ResNet model to
implement the proposed method: (A) overall architecture and
(B) residual module in ResNet

stack has 2n residual modules with sixteen 32 X 32 feature
maps per layer for 32 X 32 input images; the second stack
has 2n residual modules with thirty-two 16 X 16 feature
maps per layer; and the third stack has 2n residual modules
with sixty-four 8 X 8 feature maps per layer. For all subse-
quent experiments, the original ResNet (without teacher
knowledge) was implemented with a training procedure [5]
using Softmax cross entropy loss for true labels. As in [5],
we also used a weight decay of 0.0001 and a momentum
of 0.9 with MSRA weight initialization (introduced in
[31D).

For the proposed method, although there were no con-
straints on selecting multiple hint/guided layers, we selected
three pairs of hint/guided layers, whose feature map dimen-
sions changed (ie, N = 3; {(H1,G1), (H»,G2), (H3,G3)} in
Figure 2) to maintain the consistency of the criteria for
selecting multiple hint/guided layers for two ResNet struc-
tures with different layers.

3.1 | Proposed hint training using CIFAR-10/
100

We first experimentally evaluated the proposed training
approach using CIFAR-10 [32], a widely used reliable
benchmark image dataset composed of 50,000 32 x 32
color training images and 10,000 test images belonging to
ten classes (Figure 3). For all experiments, we applied the
data preprocessing technique presented in [5] to the train-
ing dataset using a mini-batch size of 128. Four pixels
were padded on each side to create a 40 x 40 pixel image.
Randomly cropped 32 x 32 pixel images were used for
training, whereas the original 32 X 32 pixel images were
used for testing.

For the existing hint-based KD training method (Sec-
tion 2.1), we first trained Stage 1 by minimizing (1) using
a learning rate of le-4. We stopped the training when there
was no improvement in hint training loss after 25,000 itera-
tions; therefore, hint-based training in Stage 1 was imple-
mented for 25,000 iterations, where the hint and guided
layers were set to the middle layer of each teacher and stu-
dent ResNet, respectively. Next, KD training was imple-
mented over 64,000 iterations in Stage 2. According to [5],
which started at 0.1, the learning rate changed from 0.01 to
0.001 at 32,000 and 48,000 iterations, respectively, and ter-
minated at 64,000 iterations. For the tunable parameter A
for KD training in (2), simulation results revealed that
A =5 provided better accuracy than other values, ranging
from 3 to 7. Therefore, in this experiment, we set A =5
for KD training in Stage 2.

In the proposed method, Stage 1 was trained incremen-
tally using a learning rate of le-4 over the same 25,000
iterations. First, WGI was estimated for 3,000 iterations.
Then, WG2 was extracted for 7,000 iterations. Finally, VVG3
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FIGURE 3 CIFAR-10 dataset [32] showing three random 32 X 32 images from each class

was obtained over 15,000 iterations. The remaining KD
training (Stage 2) in the proposed method was performed
in the same manner as existing hint-KD training methods.
Figure 4 represents recognition accuracies and test
losses in Stage 2 for the two knowledge transfer methods,
considering a pretrained 14-layer ResNet (recognition rate
[P.] =90.79%) and an 8-layer ResNet in the TSF. The
recognition accuracy of the original eight-layer student
ResNet without teacher knowledge was 88.09% (Case 5 in
Figure 4). The trained student ResNet, using the proposed
method (Case 2 and Case 4 in Figure 4), performed better
in terms of both accuracy and loss than the existing method
(Case 1 and Case 3 in Figure 4). Hence, the proposed
layer-wise hint training scheme using multiple hint and

290 - 90
28.8 -
P e Lt Tl b T o
28.6 -
28.4 -86 &
% >
Q 15
= 282 £
-84 3
28.0 <

36 35 4b 45 Sb 5l5 66
Iterations (1e3)

FIGURE 4 Comparison of recognition accuracy and test loss in
Stage 2 in the TSF. Case 1: Test loss of student ResNet using the
existing hint-KD training method. Case 2: Test loss of student ResNet
using the proposed method. Case 3: Recognition accuracy of student
ResNet using the existing hint-KD training method. Case 4:
Recognition accuracy of student ResNet using the proposed method.
Case 5: Recognition accuracy of the original student ResNet without
teacher knowledge

guided layers provided a well-trained student network via
layer-wise transfer of multiple hints from the pretrained tea-
cher network.

Table 1 compares the recognition accuracies of the pro-
posed method and existing knowledge transfer methods of
the pretrained 26-layer teacher ResNet (with 91.75% accu-
racy) and 14-layer student ResNet. All experimental specifi-
cations applied to each training method were the same as
those described in Figure 4. Note that, for all methods except
the existing KD method, we copied the result from Stage 1
to several student ResNets with the same topology (Net 1,
Net 2, and Net 3 in Table 1) for the subsequent Stage 2. To
train the student ResNets in Stage 2, the three Nets used dif-
ferent random parameter initializations for the remaining
weights that did not participate in the training of Stage 1. In
this experiment, we added the existing KD training method
without hint information and a hint-KD* training method for
performance comparison, where the latter method (Hint-
KD™ in Table 1) utilized the whole of each teacher and stu-
dent ResNet—except the fully connected (FC) layer—in-
stead of using the intermediate hidden layer pair, thus
applying a single hint layer and a single guided layer to the
hint-based training. Compared to the KD training method,
the existing hint-KD training method showed better recogni-
tion accuracy owing to the stage-wise training that used the
intermediate result-based hint information and t-based KD

TABLE 1 P. (%) on CIFAR-10 for the 26-layer teacher ResNet
and 14-layer student ResNet in the TSF

Method Net1 Net2 Net3 Avg. Reference
KD without Hint 90.77 90.78 90.74 90.76 P, =90.79%
Original Hint-KD ~ 91.05 91.23 91.19 91.15  forthe
. original
Hint-KD+ 90.77 90.37 90.75 90.63
14-layer
Proposed approach  91.66 91.80 91.64 91.70 ResNet

Bold value means the highest average recognition rate in Table 1.
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information (P, = 90.76% — 91.15%). In addition, it can be
seen in Table 1 that hint training of the whole network is
inferior to the original hint training approach using interme-
diate hint/guided layers (P. = 90.63% — 91.15%). How-
ever, the trained student network using the proposed method
outperformed the student network using the existing hint-KD
training method (P, =91.15% — 91.7%).
although the number of layers in the student ResNet is
reduced to 46.15% of those in the 26-layer teacher ResNet,
the 14-layer student ResNet trained using the proposed

Furthermore,

method clearly showed a high level of performance, close to
that of the teacher ResNet.

Next, we analyze the recognition accuracy of the pro-
posed method using CIFAR-100 [32]; this dataset is similar
to CIFAR-10, except it has 100 classes, containing 600
images each. Because of the small number of images per
class, we adopted wide ResNet structures ({64, 128, 256}
filters)—four times more than those described in the
CIFAR-10 case. A 20-layer teacher ResNet model was pre-
trained with the CIFAR-100 dataset (batch size = 128),
achieving 74.43% accuracy. The same data augmentation
as in CIFAR-10 was adopted in this experiment. The accu-
racy of the original eight-layer student ResNet without tea-
cher knowledge was 69.51%, using the normal training
procedure [5] over 64,000 iterations.

For the first stage of the existing hint-based KD training
method, hint-based training was implemented using a learn-
ing rate of le-4, to minimize the /, loss between outputs of
the two hint/guided layers over 35,000 iterations. Then, we
followed the same KD training procedure described in the
CIFAR-10 case for 64,000 iterations. In the proposed
method, layer-wise hint training was implemented in Stage
1, using a learning rate of le-4 for the same 35,000 itera-
tions (5,000 for Wg,, 15,000 for Wg,, and 15,000 for
WG3). The remaining KD training (Stage 2) in the pro-
posed method was also performed over 64,000 iterations
under the previous learning rate policy (ie, learning rates of
0.1, 0.01, and 0.001 until 32,000, 48,000, and 64,000 itera-
tions, respectively). We also compared the recognition
accuracy of the KD training method without hints and the
hint-KD™ training method on CIFAR-100 by averaging the
predictions of three trained eight-layer student ResNets
(Figure 5). The recognition accuracy of the proposed
method, shown in Figure 5, is better than that of the three
knowledge transfer methods.

Table 2 shows the recognition accuracies when a 26-
layer teacher ResNet model (with 74.65% accuracy) was
applied to all knowledge transfer methods with the same
learning rate policy and training iterations as in Figure 5.
We also copied the result from Stage 1 to several student
ResNets (Net 1, Net 2, and Net 3 in Table 2). The trained
eight-layer student ResNet using hint-based KD training
demonstrates improved performance compared to the
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FIGURE 5 P, (%) on CIFAR-100 for the 20-layer teacher
ResNet and 8-layer student ResNet in the TSF. Case 1: Original 8-
layer student ResNet without teacher knowledge. Case 2: KD without
hints. Case 3: Original Hint-KD. Case 4: Hint-KD*. Case 5:
Proposed method

Recognition accuracy (%)

TABLE 2 P. (%) on CIFAR-100 for the 26-layer teacher ResNet
and 8-layer student ResNet in the TSF

Reference

P, = 69.51%
for the original
8-layer ResNet

Method Net1 Net2 Net3 Avg.
KD without Hints 70.60 71.25 70.66 70.83
Original Hint-KD 71.73 71.57 7193 71.74
Hint-KD™* 7124 71.60 7135 71.39

Proposed method 72.49 7291 73.07 72.82

Bold value means the highest average recognition rate in Table 2.

existing KD training method, as well as to the original stu-
dent ResNet trained using a standard learning method with-
out the teacher's knowledge. In this case, as in CIFAR-10,
observe that hint-KD* training using the whole network is
inferior to the original hint-based KD method.

However, similar to the CIFAR-10 example, the pro-
posed training approach also outperformed the existing
hint-KD training method for the CIFAR-100 dataset
(71.74% — 72.82%). Consequently, as shown in Figure 5
and Table 2, the trained student ResNet using the proposed
hint training method was superior to student ResNets with
the existing KD or hint-KD training, as well as to the origi-
nal student ResNet without teacher knowledge.

3.2 | Proposed hint training using MNIST

To further validate the performance of the proposed train-
ing approach, we used the MNIST dataset, a large database
of handwritten digits that consists of 60,000 grayscale
training images and 10,000 test images [33]. In this experi-
ment, the ResNet architecture was the same as that in Fig-
ure 2 ({16, 32, 64} filters). The only difference was the
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TABLE 3 P, (%) on MNIST for the 32-layer teacher ResNet and
8-layer student ResNet in the TSF

Method Net 1 Net2 Net3 Avg. Reference
KD without Hints  0.56  0.57 0.55 0.56 P. = 0.6% for
Original HintKD ~ 0.51 056 045 0.506 the original

. N 8-layer
Hint-KD 0.60 050 061 0.57 ResNet

Proposed approach 0.41 040 044 0.416

Bold value means the lowest average error rate in Table 3.

feature map size, which was {28, 14, 7}, because the input
images were 28 X 28 pixels. We prepared a pretrained 32-
layer teacher ResNet that achieved an error rate P, of
0.39% using learning rates of 0.1, 0.01, and 0.001 for
18,000, 27,000, and 36,000 iterations, respectively. P, is
defined as 1 — P.. A mini-batch size of 64 was used to
train the 32-layer teacher ResNet without data preprocess-
ing.

For the existing hint-KD training method in Stage 1, we
used 25,000 iterations to train a TSF using the 32-layer tea-
cher ResNet and 8-layer student ResNet. A learning rate of
le-4 was used for 25,000 iterations. In Stage 2, we used
the same learning rate policy and training iterations
described above, up to 36,000 iterations. In this experi-
ment, we set A =5, which also provided better accuracy
than other A values.

For the proposed method, Stage 1 was also trained
using a learning rate of le-4 over 25,000 iterations
(3,000 for Wg,, 7,000 for Wg,, and 15,000 for Wg,).
Next, we performed Stage 2 for 36,000 iterations using
the same parameters as for the existing hint-based KD
training method. Table 3 summarizes the comparative
recognition accuracy results for the knowledge transfer
methods. Note that the original eight-layer student ResNet
without teacher knowledge achieves P, = 0.6%. The aver-
age accuracy of the trained student network using the
proposed method is superior to those of the three other
TSF-based training methods. Considering all experimental
results presented in Sections 3.1 and 3.2, we can con-
clude that the proposed method is more useful for knowl-
edge transfer using hint and KD information, than
existing methods.

3.3 | Comparison with layer-wise pretraining

Of the TSF-based knowledge transfer methods using multi-
ple hints mentioned in Section 2.2, the proposed training
approach can be categorized as a layer-wise pretraining
method [29,34,35] because the student ResNet learns the
teacher's hints from bottom to top layer-by-layer. Tradi-
tional unsupervised layer-wise pretraining using restricted
Boltzman machines is difficult to apply directly to the skip
connections and BNs of the ResNet structure. Instead,

[Step 1]

[Step2]

[ Step 3
Output

]

Image Image Image

FIGURE 6 Block diagram of the eight-layer SL-ResNet in Stage 1

supervised CNN-based layer-wise pretraining [29] can be
applied to the ResNet topology. Therefore, we introduce
supervised layer-wise pretraining of the ResNet (SL-
ResNet), which also comprises two stages: layer-wise train-
ing and fine-tuning.

For example, when considering the eight-layer ResNet
model for the SL-ResNet, Stage 1 is implemented with
layer-by-layer training per residual module in three steps,
as shown in Figure 6. First, Stage 1 of the SL-ResNet is
performed by building the model incrementally by adding
a residual module and training it before adding more resid-
ual models. Based on [29], the global average pooling layer
(avg. pool in Figure 6) and a fully connected layer (FC in
Figure 6) are added every time when a new residual mod-
ule is added for each step. Here, the old pooling layer and
fully connected layer are obviously removed before the
addition of new ones. As in [29], each step was trained for
the same number of iterations: 12,000 iterations for
CIFAR-10 and 8,000 iterations for MNIST. To train each
step, we used a momentum gradient descent (MGD) opti-
mizer instead of the RMSprop [29] because MGD per-
formed better in this study when using the ResNet
structure. After completing layer-wise training in Stage 1,
fine-tuning is implemented for 64,000 iterations using the
same training procedures as in Sections 3.1 and 3.2. Note
that fine-tuning usually employs small learning rates; how-
ever, because we found that a base learning rate of 0.1 was
better than smaller values, we decided on the following
learning rate policy: learning rates of 0.1, 0.01, and 0.001
until 32,000, 48,000, and 64,000 iterations, respectively,
for CIFAR-10, and learning rates of 0.1, 0.01, and 0.001
until 18,000, 27,000, and 36,000 iterations, respectively,
for MNIST. To compare the performance of the proposed
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FIGURE 7 P. (%) on CIFAR-10 for the 14-layer teacher ResNet
and 8-layer student ResNet. Case 1: Original 8-layer student ResNet
without teacher knowledge. Case 2: KD without hints. Case 3:
Original Hint-KD. Case 4: SL-ResNet. Case 5: SL-ResNet with KD.
Case 6: Proposed method

TABLE 4 P, (%) on MNIST for the 32-layer teacher ResNet and
8-layer student ResNet

Method Net1 Net2 Net3 Avg. Reference
KD without Hints 058 0.58 0.56 0573 P, = 0.6% for
Original Hint:KD ~ 0.52 054 0.62 056  the original
8-layer
SL-ResNet 049 049 051 0.496 Y
ResNet
SL-ResNet with KD 049 047 041 0.456

Proposed method *0.38 040 039 0.39

Bold value means the lowest average error rate in Table 4.
*This value means the lowest individual error rate in Table 4.

method, we also applied KD training to Stage 2 of the SL-
ResNet under the same KD training procedure described in
Sections 3.1 and 3.2.

As reported in Figure 7 and Table 4, the SL-ResNet
with KD exhibited better performance than the existing KD
and hint-KD training methods. For the SL-ResNet with
KD, A was set to 5 for CIFAR-10 and 3 for MNIST. In
addition, the trained eight-layer ResNet using SL-ResNet
without KD outperformed the eight-layer student ResNets
using the two existing knowledge transfer methods for
MNIST, although the performance of the SL-ResNet with-
out KD (Case 4 in Figure 7) was worse than that of both
other methods (Case 2 and Case 3 in Figure 7) for CIFAR-
10. The proposed method clearly surpassed the SL-ResNet
both with and without KD. Furthermore, eight-layer student
Net 1, using the proposed method, surpassed the perfor-
mance (P, = 0.38% in Table 4) of the 32-layer teacher
ResNet (P, = 0.39%). Note that the layers were reduced by
75% compared to the original 32-layer teacher ResNet.
These results verified that the proposed hint training can

FIGURE 8 P, (%) on CIFAR-10 for the 26-layer teacher and
8-layer student ResNet in the TSF

provide good initial weights for training Stage 2 compared
to the layer-wise training of an SL-ResNet, as well as the
existing hint training.

4 | DISCUSSION

In the TSF, when using multiple hint/guided layers to
transfer teacher knowledge, concurrent hint training using
multiple loss functions can also be considered in lieu of
iterative layer-wise hint training. By simultaneously using
N I, loss functions applied to N hint/guided layers, the con-
current hint training approach is given as:

N . 1 N ; :
(W) = argmin 5 3 - |[Fy (: W) — Fio W)
G; i=

Q)

where a; denotes the weighting factor for each loss function,
and W comprises the parameters obtained from concurrent
hint training. All N selected hint/guided layers were used to
simultaneously minimize loss terms of (7) during Stage 1 of
hint training. Note that, unlike concurrent hint training, the
proposed method performs bottom-up step-by-step hint
training using multiple hint/guided layers.

Figure 8 shows the comparative results of the average
recognition accuracy using each method under the same
experimental conditions as in Section 3.1 (CIFAR-10). For
the concurrent training approach, we selected the same three
pairs of hint/guided layers as the proposed method and set
equal weighting for {ai}ﬁvfﬁ. Figure 8 shows that the accu-
racy of the concurrent hint training (orange bar) is definitely
inferior to that of the proposed hint training (gray bar).

Furthermore, Figure 9 compares hint training losses
under two knowledge transfer methods (concurrent hint
training and proposed hint training) for three pairs of hint/
guided layers in the TSF. In the results, three loss terms
(loss 1, loss 2, and loss 3)—corresponding to
{H; — G; layers }?_,—are presented, where each loss term
is normalized. It can be seen in Figure 9 that the proposed
training approach (solid line) achieves a lower hint training
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FIGURE 9 Hint training on CIFAR-10 for the 26-layer teacher
ResNet and 8-layer student ResNet. Dashed line: Concurrent hint
training approach. Solid line: Proposed hint training approach

loss than the concurrent training approach (dashed line),
although knowledge transfer is considered in the higher
hint/guided layers.

However, it can be difficult to obtain a well-trained stu-
dent network using simultaneous training with multiple loss
functions on multiple hint/guided layers, which can lead to
a higher hint training loss than the proposed training
approach. In contrast, layer-wise training in the proposed
approach can overcome this problem by incrementally
training the student network using each single loss func-
tion, even when multiple hint/guided layers are used. This
implies that layer-wise hint training is preferable to concur-
rent hint training when transferring teacher knowledge
using multiple hint/guided layers in the TSF.

As shown in Figure 10, this phenomenon is also
observed for the CIFAR-100 dataset (Section 3.1). The pro-
posed hint training method (gray bar) exhibits superior per-
formance over both concurrent hint training (orange bar)
and the existing hint-based KD method (blue bar). Conse-
quently, as shown in Figures 810, a TSF based on the
proposed hint training in Section 2.2 is preferable to a
framework based on the concurrent hint training (as in (7))
to efficiently transfer teacher knowledge to a student net-
work through multiple hint/guided layers.

Next, for hint-based training of Stage 1, the teacher and
student ResNets considered in this study were both ResNet
models with the same spatial dimensions; that is, the stu-
dent ResNet acquires hint-based teacher information such
that hidden layer features of the student ResNet directly
resemble that of the teacher ResNet by minimizing the [,
loss between the two layer features. In contrast, if the tea-
cher and student ResNets have different spatial dimensions,
an additional regression function should be added theoreti-
cally between the hint layer feature and the guide layer

Trained 8-layer student ResNet

Proposed hint training

Concurrent hint training

713 715 717 719 721 723 725 727
Recognition accuracy (%)

FIGURE 10 P. (%) on CIFAR-100 for the 14-layer teacher and
8-layer student ResNet in the TSF

TABLE 5 P. (%) on CIFAR-10 for the 26-layer teacher ResNet
and 14-layer student ResNet in the TSF

Method Net1l Net2 Net3 Avg. Reference

Original 9125 9131 91.09 9121 26-layer teacher
Hint-KD (*91.15) ResNet with

Proposed ~ 92.01 9205 9197 92.01 132, 64,
method 91.7) 128} filters

Bold value means the highest average recognition rate in Table 5.
“TSF without regressor in Table 1 is used for both methods.

feature (as in [23]) to match the spatial dimension. Table 5
represents the recognition accuracy with a convolutional
regressor function in the original hint-KD training method
and the proposed method, where the two methods used the
same parameter settings as in Table 1. In this experiment,
we prepared a 26-layer teacher ResNet with {32, 64,128}
filters, which has spatial dimensions two times wider than
the teacher ResNet structure (with {16, 32, 64} filters) in
Table 1. The accuracy of the wider teacher 26-layer ResNet
was 93.36% when using the normal training procedure [5]
during 64,000 iterations. Based on [23], we adopted a con-
volutional regressor with Gaussian initialization and no bias
term. Note that a TSF without a regressor has teacher and
student ResNet models with the same spatial dimensions.
For both methods, the 14-layer student ResNet trained
using the TSF with the regressor (Table 5) showed better
accuracy than the student ResNet trained using the TSF
without the regressor (Table 1). As expected, even when
using the regressor, the proposed method outperformed

TABLE 6 P. (%) on CIFAR-100 for the 14-layer teacher ResNet
and 8-layer student ResNet in the TSF

Method Net1 Net2 Net3 Avg. Reference

Original ~ 71.88 72.16 7235 72.13 14-layer teacher
Hint-KD (*71.85) ResNet with {80,

Proposed  73.07 72.94 7332 73.11 160, 320} filters
method (*72.65)

Bold value means the highest average recognition rate in Table 6.
“TSF without regressor in Figure 10 is used for both methods.
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the existing hint-KD training method (P, = 91.21% —
92.01%).

Next, recognition accuracies on CIFAR-100 for the two
methods were compared in Table 6 for a 14-layer teacher
ResNet with {80, 160, 320} filters and an 8-layer student
ResNet with {64, 128, 256} filters in a TSF. The pre-
trained 14-layer teacher ResNet using {80, 160, 320} filters
provided 73.49% accuracy. Because the teacher and student
ResNets have different spatial dimensions, we used the
same type of convolutional regressor as that used in
Table 5. As shown in Table 6, the proposed method is
superior to the existing hint-KD training method for the
TSF with the regressor (P. = 72.13% — 73.11%), as well
as that for the TSF without the regressor (P, = 71.85% —
72.65%). From the results shown in Tables 5 and 6, the
TSF using the regressor provided much better student
ResNets than the TSF without the regressor for both train-
ing methods. Using the regressor can allow the student
ResNet with narrow hidden layers to learn from this wider
teacher ResNet, where the teacher ResNet with the wider
hidden layers showed better recognition accuracy than the
original teacher ResNet used in the TSF without regressor.
Therefore, the student ResNet can benefit from this wider
teacher ResNet, which provides higher accuracy perfor-
mance, despite having different spatial dimensions. This
also preserves the computational efficiency of using the
student ResNet with narrow hidden layers. In future work,
we will further address efficient knowledge transfer for
TSF structures with various spatial dimensions.

5 | CONCLUSION

In this paper, we proposed a layer-wise hint training
method to improve existing knowledge transfer methods
using the TSF. To efficiently transfer pretrained teacher
knowledge to a student network, the proposed method is
composed of two main stages: (i) iterative and layer-wise
training using pretrained hints between multiple hint layers
and guided layers, and (ii) t-based KD training using the
hint-based information extracted from Stage 1.

To validate the effectiveness of the proposed method,
we compared its recognition accuracy to that of the
ResNet-based layer-wise pretraining method as well as the
existing TSF-based training methods on several reliable
datasets. State-of-the-art ResNets with different layers and
the same spatial dimensions were utilized in the TSF.

Based on the step-by-step hint training approach
described in Section 2.2, the advantages of the proposed
method can be summarized as follows. First, by selecting
multiple hint and guided layers, more pretrained teacher
knowledge, including low-level detailed features and high-
level abstracted features—from the lower hint layer to the

upper hint layer—is considered for knowledge transfer than
the existing hint-based training approach using the intermedi-
ate hint layer feature and intermediate guided layer feature.
Next, repetitive layer-wise training and layer-wise knowl-
edge transfer from the bottom to top can improve the recog-
nition accuracy of the small student network. As a result,
useful information that is inherent in the hidden layers of the
complex teacher network can be more accurately conveyed.

Consequently, the results showed that the proposed
method of using layer-wise hint-based information was supe-
rior to the existing hint-KD training method of using the
intermediate result-based hint information when transferring
the pretrained teacher-network hint and KD information to
the student network. In addition, although KD was applied to
the teacher SL-ResNet, the proposed method provided a
more accurately optimized student network than both the SL-
ResNet without KD and SL-ResNet with KD.
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