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This paper presents a tri‐wideband bandpass filter (TWB‐BPF) with compact size,

high band‐to‐band isolation, and multiple transmission zeros (TZs). The proposed

TWB‐BPF is based on a multiple‐mode resonator (MMR), which is interpreted by

the method of the even‐ and odd‐mode analysis technique. The MMR can excite

11 resonant modes, where the first two modes comprise the first passband, the

next four modes form the second passband, and the last five modes are used to

generate the third passband. In addition, 10 TZs are yielded to obtain high band‐
to‐band isolation and wide stopband suppression characteristics up to 14.95fc1 (fc1
is the center frequency of the first passband). To verify the proposed filter, a

TWB‐BPF with 3‐dB fractional bandwidths (FBWs) of 37.4%, 43.5%, and 40.4%

is designed, fabricated, and measured.

KEYWORD S

bandpass filter, multi-mode resonator, transmission zeros, tri-wideband, wide stopband

1 | INTRODUCTION

To meet the requirements of high data rate, high transmis-
sion capacity, and multiple services in modern communica-
tion systems, there have been accelerated developments to
realize radio‐frequency (RF) front‐ends that are multi‐band
and broadband. In recent years, multi‐band bandpass filters
(BPFs) have attracted much interest. For example, various
excellent works that focused mainly on multi‐band and
high selectivity have been reported [1–17]. In [1–5], step‐
impedance resonators are widely employed to design dual‐
band, tri‐band, and quad‐band BPFs. The method of com-
bining several BPFs or resonators with common input/out-
put ports is a straightforward and effective approach to
design multi‐band BPFs [6–9]. Using this approach, single‐
band, dual‐band, tri‐band, quad‐band, and quint‐band BPFs
can be easily achieved [6]. In [10,11], the concept of signal
multipath transmission is used to design high‐performance
tri‐band BPFs. Owing to the merits of their simple structure

and controllable resonant frequencies, multiple‐mode res-
onators (MMRs) are also widely used to design multi‐band
BPFs [12–18]. In [12], a very closely spaced passband and
highly selective dual‐band BPF are developed using MMR.
Although the filters [1,3–6,8–14,18] have demonstrated
their high performances, the narrow bandwidth is still
insufficient to meet the requirements of broadband wireless
communication systems. To solve this issue, several dual‐/
tri‐wideband BPFs were developed to satisfy those require-
ments. The 3‐dB fractional bandwidths (FBWs) of these
reported multi‐wideband BPFs are mainly about 10%–20%,
while a TWB‐BPF with 3‐dB FBWs >40% is occasionally
reported. Moreover, the notch‐like stopband characteristics
of these multi‐wideband BPFs need to be further improved.

In this paper, a compact TWB‐BPF based on a novel
MMR, which is interpreted using the even‐ and odd‐mode
analysis method, is presented. The filter has a high band‐to‐
band isolation and wide stopband suppression characteristics
up to 14.95fc1. The center frequencies (CFs) of the TWB‐
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BPF are 1.07 GHz, 3.25 GHz, and 8.32 GHz with 3‐dB
FBWs of 37.4%, 43.5%, and 40.4%, respectively. To verify
these results, a TWB‐BPF with compact size, high band‐to‐
band isolation, and wide upper stopband suppression was
designed, fabricated, and measured. The measured and full‐
wave electromagnetic simulated results of the TWB‐BPF
agree well with each other.

2 | DESIGN Of TWB‐BPF

Figure 1 shows the configuration of the proposed MMR,
which consists of a cross‐shaped resonator (denoted by (L1,

W1), (L3, W3), (L4, W4), and (L5, W5)) with shorted circuit
termination, and two sets of symmetrical stub‐loaded res-
onators (denoted by (L2, W2) (L6, W6), and (L7, W7)). Fig-
ure 1A shows the layout of the proposed TWB‐BPF.
Figure 1B illustrates the transmission‐line model (TLM) of
the TWB‐BPF. Considering that the structure is symmetri-
cal with the T‐T’ plane, the even‐ and odd‐mode analysis
technique was employed to analyze this MMR. Figure 1C
and D, respectively, show the odd‐mode and even‐mode
equivalent circuits.

As illustrated in Figure 1C, Yodd-in denotes the input
admittance under odd‐mode excitation. Likewise, Yeven-in
represents the input admittance under even‐mode excita-
tion, as shown in Figure 1D. For simplicity, the parameter
L7 is neglected. According to the transmission‐line theory,
we can derive the following results.

Yodd-in ¼ Y1ðYinA þ jY1tanθ1Þ
Y1 þ jYinAtanθ1

þjY6tanθ6; (1)

YinA ¼ jðY2 tan θ2 � Y3 cot θ3Þ; (2)

Yeven-in ¼ Y1ðYinB þ jY1tanθ1Þ
Y1 þ jYinBtanθ1

þjY2tanθ2; (3)

YinB ¼ Y3ðYinA þ jY3tanθ3Þ
Y3 þ jYinAtanθ3

þjY2tanθ2; (4)

YinA ¼ jðY5 tan θ5 � Y4 cot θ4Þ; (5)

where Yn (n = 1, 2, 3, 4, 5, and 6) and θn (n = 1, 2, 3, 4, 5,
and 6) represent the characteristic admittance and electrical
length, respectively. For simplicity, we let the center fre-
quency f0 = 2.4 GHz (reference frequency for electrical
length calculation), Y3 = 1/160 S, Y1 = Y2 = Y4 = Y5 =
Y6 = 0.01 S. According to the resonant condition, we have:

ImðYodd-inÞ ¼ 0; (6)

ImðYeven-inÞ ¼ 0: (7)

As an example, the circuit parameters are set as
θ1 = 45°, θ2 = 47°, θ3 = 10°, θ4 = 7°, θ5 = 21°,
θ6 = 106°, Z1 = Z2 = Z4 = Z5 = Z6 = 100 Ω, Z3 = 80 Ω,
and Zn (n = 1, 2, 3, 4, 5, and 6) denote the characteristic
impedance. Therefore, the resonant frequencies can be
solved numerically based on (6) and (7).

In detail, the initial circuit parameter values of the electri-
cal lengths are calculated at f0. When a certain frequency fi
is considered, the values of the electrical lengths can be
redefined as θ�n = θnfi/f0 (n = 1, 2, 3, 4, 5, and 6). Then, we
substitute the updated values of the electrical lengths into
(1–7). For example, if (6) is satisfied, it means that fi is an
odd‐mode resonant frequency for which we are searching.
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FIGURE 1 Proposed TWB‐BPF (A) layout, (B) TLM, (C) odd‐
mode equivalent circuit, and (D) even‐mode equivalent circuit

118 | XIONG ET AL.



As shown in Figure 2, we investigate the resonant fre-
quencies of the MMR vs various values of θ2, θ4, θ5, and θ6.
As can be seen, 11 resonant modes have been excited, where
fo1, fo2, fo3, fo4, and fo5 denote the odd‐mode resonant fre-
quencies determined by (6), whereas fe1, fe2, fe3, fe4, fe5, and
fe6 represent the even‐mode resonant frequencies determined
by (7). It can be observed from Figure 2A that fei (i = 2, 3,
4, 5, 6) and foi (i = 2, 3, 4, 5) decrease with the increase in
θ2, whereas fo1 and fe1 change slightly. As shown in Fig-
ure 2B, θ4 mainly affects the resonant frequencies of fei
(i = 1, 2, 4, 5, 6) with foi (i = 1, 2, 3, 4, 5) unchanged. As
illustrated in Figure 2C, fe4, fe5, and fe6 decrease dramati-
cally, whereas the others resonant frequencies remain
unchanged with the increase in θ5. As shown in Figure 2D,
the 11 resonant frequencies decrease with the increase in θ6.

As illustrated in Figure 3, the frequency responses of
the TWB‐BPF are simulated using TLM. It can be
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FIGURE 2 Properties of resonance frequencies vs (A) θ2, (B) θ4, (C) θ5, and (D) θ6
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observed that the filter has 11 transmission poles (TPs),
where the first two poles compose the first passband, the
next four poles form the second passband, and the last five

poles are used to construct the third one. It can be observed
that three additional TZs are generated by introducing stub
coupling. In order to determine how the TZs are generated,
the relationship between TZ and Zin is investigated, as
shown in Figure 4. It can be found that a TZ will be gener-
ated at a certain frequency, where Zin = 0 is satisfied. This
is attributed to the introduction of virtual ground to short
out the transmission signals. Finally, the condition for the
generation of TZs can be expressed as:

Zin1 ¼ �jZ6 cot θ6 ¼ 0; (8)

Zin2 ¼ �jZ2 cot θ2 ¼ 0; (9)

Zin3 ¼ �jZ5 cot θ5 ¼ 0: (10)

That is,

fTZ ¼ ð2nþ 1Þc
4L6

ffiffiffiffiffiffi
ɛre

p ðn ¼ 0; 1; 2; . . . Þ; (11)
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fTZ ¼ ð2nþ 1Þc
4L2

ffiffiffiffiffiffi
ɛre

p ðn ¼ 0; 1; 2; . . . Þ; (12)

fTZ ¼ ð2nþ 1Þc
4L5

ffiffiffiffiffiffi
ɛre

p ðn ¼ 0; 1; 2; . . . Þ: (13)

As shown in Figure 5A, the first passband can be
adjusted by tuning the capacitance and W4, while the sec-
ond and third passbands remain almost unchanged. Fig-
ure 5B shows that the second passband can be shifted by
changing L2. Furthermore, the variation in L2 does not
affect the other passbands. Figure 5C shows that L6 only
affects the third passband.

3 | EXPERIMENTAL VERIFICATION

For validation, a TWB‐BPF was fabricated on a substrate
of Rogers 4003 with parameters: εr = 3.38, h = 0.508 mm,
and tan δ = 0.0027. The physical dimensions of this BPF
were optimized by Sonnet 15.52, and the parameters are
given as L1 = 9.3, W1 = 0.45, L2 = 10.3, W2 = 0.3,

L3 = 2.9, W3 = 0.3, L4 = 2.1, W4 = 0.1 L5 = 4, W5 = 0.2,
L6 = 20.6, W6 = 0.2, L7 = 2.85, W7 = 0.1, S1 = 0.3, and
S2 = 1.6 (unit: mm). The frequency responses of the simu-
lated and measured results are shown in Figure 6. It can be
observed that the measured CFs are centered at 1.07 GHz,
3.25 GHz, and 8.32 GHz with 3‐dB FBWs of 37.4%,
43.5%, and 40.4%, respectively. The minimum insertion
losses (ILs) of the three passbands are 0.75 dB, 0.83 dB,
and 1.78 dB, respectively. It can be seen that the maximum
band‐to‐band isolations are about 50 dB and 60.3 dB,
respectively. A wide stopband suppression up to 14.95fc1
with a rejection level of 13 dB was achieved. A compar-
ison between this work and some reported tri‐band BPFs is
summarized in Table 1, and shows that the TWB‐BPF has
a low IL, compact size, and broad bandwidth.

4 | CONCLUSION

In this paper, we presented a compact TWB‐BPF based on
a novel MMR, and its resonant behavior was analyzed.
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TABLE 1 Comparison with some reported tri‐band BPFs

Filter CFs (GHz) 3–dB FBWs (%) ILs (dB) TPs/TZs Size (λg × λg)

[2] 1.9/5.65/9.2 53/17.7/10.87 3.65/3.65/3.65 6/2 0.694 × 0.076

[3] 1.57/3.9/7 4.1/2/3 2.0/2.1/1.8 6/6 0.145 × 0.113

[7] 2/3.6/5.5 18.5/10.1/13.2 3.0/3.0/3.0 6/6 0.303 × 0.156

[11] 1.575/1.8/2.4 6.1/3.5/3.1 0.7/0.9/0.9 6/6 0.21 × 0.12

[17] 1.25/3.5/6.82 24.4/18.3/13.8 0.45/0.42/1.26 6/7 0.156 × 0.149

This work 1.07/3.25/8.32 37.4/43.5/40.4 0.75/0.83/1.78 11/10 0.166 × 0.073
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The proposed TWB‐BPF has a wide bandwidth in each
passband, a high band‐to‐band isolation, low IL, and wide
stopband suppression, which makes the filter attractive for
multiple services and broadband wireless communication
systems.
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