DOI QR코드

DOI QR Code

Off-axis self-reference digital holography in the visible and far-infrared region

  • Bianco, Vittorio (Institute of Applied Sciences and Intelligent Systems, Italian National Research Council (ISASI-CNR)) ;
  • Paturzo, Melania (Institute of Applied Sciences and Intelligent Systems, Italian National Research Council (ISASI-CNR)) ;
  • Finizio, Andrea (Institute of Applied Sciences and Intelligent Systems, Italian National Research Council (ISASI-CNR)) ;
  • Ferraro, Pietro (Institute of Applied Sciences and Intelligent Systems, Italian National Research Council (ISASI-CNR))
  • Received : 2018.08.02
  • Accepted : 2018.11.20
  • Published : 2019.02.12

Abstract

Recent advances in digital holography in the far-infrared region of the spectrum have demonstrated the potential use of digital holography in homeland security as a tool to observe hostile environments in which smoke, flames, and dust impair vision. However, to make this application practical, it is necessary to simplify the optical setup. Here, we show an off-axis, self-reference scheme that spills the reference beam out from the object beam itself and avoids the need for a complex interferometric arrangement. We demonstrate that this scheme allows the reconstruction of high-quality holograms of objects captured under visible as well as far-infrared light exposure. This could pave the way to the industrialization of holographic systems to enable users to see through fire. Moreover, the quantitative nature of the holographic signal is preserved. Thus, the reported results demonstrate the possibility to use this setup for optical metrology.

Keywords

References

  1. J.-F. Vandenrijt et al., Digital holographic interferometry in the long-wave infrared and temporal phase unwrapping for measuring large deformations and rigid body motions of segmented space detector in cryogenic test, Opt. Eng. 55 (2016), no. 12, 121723:1-121723:11.
  2. M.P. Georges et al., An overview of interferometric metrology and NDT techniques and applications for the aerospace industry, Proc. SPIE - The Int. Soc. Opt. Eng., San Diego, CA, USA, 2016, pp. 996007:1-996007:12.
  3. J.-F. Vandenrijt et al., Long-wave infrared digital holography for the qualification of large space reflectors, ICSO, Int. Conf. Pace Opt., Ajaccio, France, Oct. 9-12, 2012, pp. 1056403:1-1056403:5.
  4. M. Georges et al., Digital holographic interferometry and ESPI at long infrared wavelengths with CO2 lasers, Digital Holography Three-Dimensional Imaging, Miami, FL, USA, Apr. 28-May 2, 2012, Article no. DW4C.1.
  5. M.P. Georges et al., Digital holographic interferometry with CO2 lasers and diffuse illumination applied to large space reflector metrology [Invited], Appl. Opt. 52 (2013), A102-A116. https://doi.org/10.1364/AO.52.00A102
  6. E. Stoykova et al., Visible reconstruction by a circular holographic display from digital holograms recorded under infrared illumination, Opt. Lett. 37 (2012), 3120-3122. https://doi.org/10.1364/OL.37.003120
  7. M. Paturzo et al., Infrared digital holography applications for virtual museums and diagnostics of cultural heritage, SPIE Opt. Metrology, Munich, Germany, 2011, pp. 80840K:1-80840K:6, https://doi.org/10.1117/12.890039.
  8. M. Locatelli et al., Imaging live humans through smoke and flames using far-infrared digital holography, Opt. Express 21 (2013), 5379-5390. https://doi.org/10.1364/OE.21.005379
  9. V. Bianco et al., Portable IR laser system for real-time display of alive people in fire scenes, J. Display Technol. 11 (2015), 834-838. https://doi.org/10.1109/JDT.2014.2381366
  10. M. P. Georges et al., Speckle interferometry at 10 ${\mu}m$ with CO2 lasers and microbolometers array, Photonics North, June 6-8, 2012, pp. 84121O:1-84121O:8, doi: 10.1117/12.2001440.
  11. P. Poggi et al., Remote monitoring of building oscillation modes by means of real-time Mid Infrared Digital Holography, Sci. Rep. 6 (2016), Article no. 23688.
  12. P. Mensah et al., Scanning digital holography at 10.6 ${\mu}m$ for large scene reconstruction, J. Phys. Comm. 2 (2018), no. 5, Article no. 055018.
  13. M. Paturzo et al., Optical reconstruction of digital holograms recorded at 10.6 ${\mu}m$: Route for 3D imaging at long infrared wavelengths, Opt. Lett. 35 (2010), 2112-2114. https://doi.org/10.1364/OL.35.002112
  14. M. Totzeck, Interferometry, Springer Handbook of Lasers and Optics, Springer Berlin Heidelberg, Berlin, Heidelberg, 2012. https://doi.org/10.1007/978-3-642-19409-2_16.
  15. A. Nativ and N. T. Shaked, Compact interferometric module for full-field interferometric phase microscopy with low spatial coherence illumination, Opt. Lett. 42 (2017), 1492-1495. https://doi.org/10.1364/OL.42.001492
  16. N. Patel et al., Wavefront division digital holographic microscopy, Biomed. Opt. Express 9 (2018), 2779-2784. https://doi.org/10.1364/BOE.9.002779
  17. W. Zhang et al., Wavefront division digital holography, AIP Adv. 8 (2018), Article no. 055304.
  18. V. Bianco et al., On-speckle suppression in IR digital holography, Opt. Lett. 41 (2016), no. 22, 5226-5229. https://doi.org/10.1364/OL.41.005226
  19. V. Bianco et al., Strategies for reducing speckle noise in digital holography, Light Sci. Appl. 7 (2018), 48. https://doi.org/10.1038/s41377-018-0050-9.
  20. P. Memmolo et al., Numerical manipulation of digital holograms for 3D imaging and display: An overview, Proc. IEEE 105 (2017), 892-905. https://doi.org/10.1109/JPROC.2016.2617892
  21. F. Dubois et al., Focus plane detection criteria in digital holography microscopy by amplitude analysis, Opt. Express 14 (2006), 5895-5908. https://doi.org/10.1364/OE.14.005895
  22. P. Memmolo et al., Automatic focusing in digital holography and its application to stretched holograms, Opt. Lett. 36 (2011), 1945-1947. https://doi.org/10.1364/OL.36.001945
  23. V. Bianco et al., Random resampling masks: A non-Bayesian one-shot strategy for noise reduction in digital holography, Opt. Lett. 38 (2013), no. 5, 619-621. https://doi.org/10.1364/OL.38.000619
  24. J. M. Bioucas-Dias and G. Valadao, Phase unwrapping via graph cuts, IEEE Trans. Image Process. 16 (2007), no. 3, 698-709. https://doi.org/10.1109/TIP.2006.888351
  25. AEO505D08F Specification Sheet, available at https://www.thorlabs.com/drawings/55097cd194019eb-FC53358D-C170-7584-85406F5F3CE937E2/AE0505D08F-SpecSheet.pdf
  26. M. Paturzo et al., Digital holography, a metrological tool for quantitative analysis: Trends and future applications, Opt. Lasers Eng. 104 (2018), 32-47. https://doi.org/10.1016/j.optlaseng.2017.11.013
  27. V. Pagliarulo et al., Leaks detection in stainless steel kegs via ESPI, Opt. Lasers Eng. 110 (2018), 220-227. https://doi.org/10.1016/j.optlaseng.2018.06.007
  28. M. P. Georges et al., An overview of interferometric metrology and NDT techniques and applications for the aerospace industry, Proc. of SPIE 9960 (2016), Article no. 996007.
  29. V. Antonucci et al., Low velocity impact response of carbon fiber laminates fabricated by pulsed infusion: A review of damage investigation and semi-empirical models validation, J. Progress Aerospace Sci. 81 (2016), 26-40. https://doi.org/10.1016/j.paerosci.2015.11.002
  30. V. Pagliarulo et al., Combining ESPI with laser scanning for 3D characterization of racing tyres sections, Opt. Lasers Eng. 104 (2018), 71-77. https://doi.org/10.1016/j.optlaseng.2017.07.004