Acknowledgement
Supported by : 한국연구재단
References
- Byun, T., Kim, J., & Kim, H. (2006). The Recognition of Crack Detection Using Difference Image Analysis Method based on Morphology, Journal of the Korea Institute of Information and Communication Engineering, 10(1), 197-205.
- Cha, Y., Choi, W., & Oral, B. (2017). Deep Learning‐Based Crack Damage Detection Using Convolutional Neural Networks, Computer-Aided Civil and Infrastructure Engineering, 32(5), 361-378. https://doi.org/10.1111/mice.12263
- Chen, L., Jan, H., & Huang, C. (2001). Mensuration of Concrete Cracks Using Digitized Close-Range Photographs, The 22nd Asian conference of Remote Sensing, 5-9.
- Cho, S., Kim, B., & Lee, Y. (2018). Image-Based Concrete Crack and Spalling Detection using Deep Learning, The Magazine of the Korean Sosiety of Civil Engineers, 66(8), 92-97.
-
Donglai, wei., Bolei, Whou., Antonio, Torralba., and William, T.Freema. (2015). "mNeuron: A Maltlab Plugin to Visualize neurons From Deep Models"
- Joseph, R., Santosh, Divvala., Ross, G., & Ali, F. (2016). You Only Look Once: Unified, Real-Time Object Detection, The IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 779-788.
- Joseph, R., & Ali, F. (2017). YOLO9000: Better, Faster, Stronger, The IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 1-9.
- Kim, A., Kim, D., Byun, Y., & Lee, S. (2018). Crack Detection of Concrete Structure Using Deep Learning and Image Processing Method in Geotechnical Engineering, Journal of the Korean Geotechnical Society, 34(12), 145-154. https://doi.org/10.7843/KGS.2018.34.12.145
- Kim, K., Cho, J., & Ahn, S. (2005). A Thechnique for Image Processing of Concrete Surface Cracks, Journal of the Korea Institute of Information and Communication Engineering, 9(7), 1575-1581.
- Kim, K., & Cho, J. (2010). Detection of Concrete Surface Cracks using Fuzzy Techniques, Journal of the Korea Institute of Information and Communication Engineering, 14(6), 1353-1358. https://doi.org/10.6109/jkiice.2010.14.6.1353
- Kim, J., & Cho, Y. (2002). Development of Crack Detection Program on Asphalt Pavement, Journal of the Korean Society Of Civil Engineers, 22(4D), 639-647.
- Kim, J., Jung, Y., & Rhim, H. (2017). Study on Structure Visual Inspection Technology using Drones and Image Analysis Techniques, Journal of the Korean Institute of Building Construction, 17(6), 545-557.
- K, Lenc., & A, Vedaldi. (2015). R-cnn minus r. arXiv preprintarXiv:1506.06981.
- Kim, Y. (2016). Development of Crack Recognition System for Concrete Structure Using Image Processing Method, The Journal of Korean Institute of Information Technology, 14(10), 163-168.
- Ko, K., & Sim, K. (2017). Trends in Object Recognition and Detection Using Deep Learning, Journal of Institute of Control, Robotics and Systems, 23(3), 17-24.
- Lee, B., Kim, Y., & Kim, J. (2005). Development of Image Processing for Concrete Surface Cracks by Employing Enhanced Binarization and Shape Analysis Technique, Journal of the Korea Concrete Institute, 17(3), 361-368. https://doi.org/10.4334/JKCI.2005.17.3.361
- Lee, J., & Kim, K. (2007). Extraction and Analysis of Crack on Concrete Surfaces Using Improved Image Processing Techniques, Proceeding of the Korea Intelligent Information Systems Society Conference, 365-372.
- Lee, H., Kim, J., & Jang, I. (2012). Development of Automatic Crack Detection System for Concrete Structure Using Image Processing Method, Journal of The Korea Institute for Structural Maintenance and Inspection, 16(1), 64-78. https://doi.org/10.11112/jksmi.2012.16.1.064
- R, B, Girshick. (2015). Fast R-CNN. CoRR, abs/1504.08083, 2015.
- Son, B., & Lee, K. (2017). Crack Recognition of Sewer with Low Resolution using Convolutional Neural Network(CNN) Method, Journal of the Korean Society for Advanced Composite Structures, 8(4) 58-65. https://doi.org/10.11004/kosacs.2017.8.4.058
- Syed, I, H., Dang, L, M., Im, S., Min, K., Nam, J., & Moon, H. (2018). Damage Detection and Classification System for Sewer Inspection using Convolutional Neural Networks based on Deep Learning, Journal of the Korea Institute of Information and Communication Engineering, 22(3), 451-457. https://doi.org/10.6109/jkiice.2018.22.3.451
- S, Ren., K, He., R, Girshick., & J, Sun. (2015). Faster r-cnn: Towards real-time object detection with region proposal networks. arXiv preprint arXiv:1506.01497.
- W. Liu, D. Anguelov, D. Erhan, C. Szegedy, & S. E. eed. (2015). SSD: single shot multibox detector. CoRR, abs/1512.02325.