Acknowledgement
Supported by : 한국연구재단
References
- Ministry of Employment and Labor. (2017). Analysis of the Status of Occupational Accidents- Focusing on Occupational Accidents by Industrial Accident Compensation Law.
- Choi, S. D., & Carlson, K. (2014). Occupational safety issues in residential construction surveyed in Wisconsin. United States. Industrial health, 52(6), 541-547. https://doi.org/10.2486/indhealth.2014-0008
- Liao, C. W., & Perng, Y. H. (2008). Data mining for occupational injuries in the Taiwan construction industry. Safety Science, 46, 1091-1102. https://doi.org/10.1016/j.ssci.2007.04.007
- Kim, E. J. (2018). Analysis on the Factors of Construction Disaster Applying the AHP. Journal of the Regional Association of Architectural Institute of Korea, 20(1), 197-204.
- Shin, W. S., & Son, C. B. (2018). An Analysis on the Accident Influence Factor and Severity of Construction General Workers. Journal of the Architectural Institute of Korea Structure & Construction, 34(3), 69-76. https://doi.org/10.5659/JAIK_SC.2018.34.3.69
- Gillen, M. (1999). Injuries from construction falls: functional limitations and return to work. The American Association of Occupational Health Nurses, 47(2), 65-73.
- Bunn, T. L., Slavova, S., & Bathke, A. (2007). Data Linkages of inpatient hospitalization and workers' claims data sets to characterize occupational falls. Journal of the Kentucky Medical Association. 105(7), 313-320.
- You, H. J., Yoo, Y. T., & Kang, K. S. (2017). On-Site Safety Management System in Construction Projects A Study on Improvement of efficiency apartment. Journal of the Korea Safety Management & Science, 19(1), 87-94. https://doi.org/10.12812/ksms.2017.19.1.87
- Unsar, S., & Sut, N. (2009) General assessment of the occupational accidents that occurred in Turkey between the years 2000 and 2005. Safety Science, 47, 614-619. https://doi.org/10.1016/j.ssci.2008.08.001
- Lee, D. H. (2017). The state and analysis of construction workers' grave industrial accident based on human dignity. Kyungpook National University Law Journal, 57, 169-198. https://doi.org/10.17248/knulaw..57.201702.169
- Forteza, F. J., Carretero-Gomez, J. M., & Sese, A. (2017). Occupational risk, accidents on sites and economic performance of construction firms. Safety Science, 94, 61-76. https://doi.org/10.1016/j.ssci.2017.01.003
- Breiman, L., Friedman, J. H., Olshen, R. A., & Stone, C. J. (1984). Classification and Regression Trees. Belmont, Califonia: Wadsworth Inc.
- Bishop, C. M. (2006). Pattern Recognition and Machine Learning. Springer.
- Geron, A. (2017). Hands-on machine learning with Scikit-Learn and TensorFlow: concepts, tools, and techniques to build intelligent systems. O'Reilly Media, Inc.
- Leem, Y., Hwang, Y., & Choi, Y. (2005). Factor Analysis on Injured People using Data Mining Technique, Journal of the Korea Safety Management & Science, 7(4), 61-71.
- Cheng, C. W., Leu, S. S., Cheng, Y. M., Wu, T. C., & Lin, C. C. (2012). Applying data mining techniques to explore factors contributing to occupational injuries in Taiwan's construction industry. Accident Analysis & Prevention, 48, 214-222. https://doi.org/10.1016/j.aap.2011.04.014
- Goh, Y. M., & Binte Sa'adon, N. F. (2015). Cognitive factors influencing safety behavior at height: a multimethod exploratory study. Journal of Construction Engineering and Management, 141(6), 04015003. https://doi.org/10.1061/(ASCE)CO.1943-7862.0000972
- Mistikoglu, G., Gerek, I. H., Erdis, E., Usmen, P. M., Cakan, H., & Kazan, E. E. (2015). Decision tree analysis of construction fall accidents involving roofers. Expert Systems with Applications, 42(4), 2256-2263. https://doi.org/10.1016/j.eswa.2014.10.009
- Cho, Y., Kim, Y., & Shin, Y. (2017). Prediction Model of Construction Safety Accidents using Decision Tree Technique. Journal of the Korea Institute of Building Construction, 17(3), 295-303. https://doi.org/10.5345/JKIBC.2017.17.3.295
- Rojas, R. (2009). AdaBoost and the super bowl of classifiers a tutorial introduction to adaptive boosting. Freie University, Berlin, Tech. Rep.
- Bergstra, J., Yamins, D., & Cox, D. D. (2013). Hyperopt: A python library for optimizing the hyperparameters of machine learning algorithms. In Proceedings of the 12th Python in science conference (pp. 13-20).
- Arlot, S., & Celisse, A. (2010). A survey of cross-validation procedures for model selection. Statistics surveys, 4, 40-79. https://doi.org/10.1214/09-SS054
- Tsoumakas, G., & Katakis, I. (2007). Multi-label classification: An overview. International Journal of Data Warehousing and Mining (IJDWM), 3(3), 1-13. https://doi.org/10.4018/jdwm.2007070101
- Strobl, C., Boulesteix, A. L., Kneib, T., Augustin, T., & Zeileis, A. (2008). Conditional variable importance for random forests. BMC bioinformatics, 9(1), 307. https://doi.org/10.1186/1471-2105-9-307
- Parr, T., Turgutlu, K., Csiszar, C., & Howard, J. (2018). Beware Default Random Forest Importances.