DOI QR코드

DOI QR Code

Assessment of the uncertainty in the SWAT parameters based on formal and informal likelihood measure

정형·비정형 우도에 의한 SWAT 매개변수의 불확실성 평가

  • Seong, Yeon Jeong (Department of Construction and Disaster Prevention Engineering, Kyungpook National University) ;
  • Lee, Sang Hyup (Department of Construction and Disaster Prevention Engineering, Kyungpook National University) ;
  • Jung, Younghun (Department of Construction and Disaster Prevention Engineering, Kyungpook National University)
  • 성연정 (경북대학교 건설방재공학과) ;
  • 이상협 (경북대학교 건설방재공학과) ;
  • 정영훈 (경북대학교 건설방재공학과)
  • Received : 2019.10.10
  • Accepted : 2019.10.20
  • Published : 2019.11.30

Abstract

In hydrologic models, parameters are mainly used to reflect hydrologic elements or to supplement the simplified models. In this process, the proper selection of the parameters in the model can reduce the uncertainty. Accordingly, this study attempted to quantify the uncertainty of SWAT parameters using the General Likelihood Uncertainty Estimation (GLUE). Uncertainty analysis on SWAT parameters was conducted by using the formal and informal likelihood measures. The Lognormal function and Nash-Sutcliffe Efficiency (NSE) were used for formal and informal likelihood, respectively. Subjective factors are included in the selection of the likelihood function and the threshold, but the behavioral models were created by selecting top 30% lognormal for formal likelihood and NSE above 0.5 for informal likelihood. Despite the subjectivity in the selection of the likelihood and the threshold, there was a small difference between the formal and informal likelihoods. In addition, among the SWAT parameters, ALPHA_BF which reflects baseflow characteristics is the most sensitive. Based on this study, if the range of SWAT model parameters satisfying a certain threshold for each watershed is classified, it is expected that users will have more practical or academic access to the SWAT model.

수문모형에서 매개변수는 수문요소를 반영하거나 단순화된 모형을 보완하기 위해 사용된다. 이러한 과정에서 매개변수로 인한 모형의 불확실성이 발생할 수 있다. 따라서, 본 연구에서는 General Likelihood Uncertainty Estimation (GLUE)을 이용하여 SWAT 매개변수의 불확실성을 평가하고자 하였다. GLUE의 우도함수는 정형/비정형 우도를 이용하여 불확실성 해석을 수행하였다. 정형우도는 lognormal 함수를 비정형우도는 Nash-Sutcliffe Efficiency (NSE)를 이용하였다. 우도와 임계치를 선택하는데 주관적인 요소가 포함되지만 정형우도는 상위 30%, 비정형우도는 0.5이상의 NSE 값을 가지는 우도를 선택하여 행위모델을 생성하였다. 연구결과 우도선택과 임계치 선택의 주관성에도 불구하고 정형/비정형 우도는 작은 차이가 있었으나 우도의 선택과 상관없이 일관된 점분포, 사후분포 및 SWAT결과의 불확실성 범위를 나타내었다. 또한, 공통적으로 SWAT매개변수 가운데 기저유출과 관련된 ALPHA_BF가 가장 민감한 것으로 나타났다. 본 연구를 통하여 유역별로 어떤 임계치를 만족하는 SWAT모형 매개변수의 범위를 분류한다면 사용자들이 SWAT모형에 대한 실무적인 혹은 학술적인 접근이 용이해질 것으로 기대된다.

Keywords

References

  1. Abbaspour, K. C., Johnson, C. A., and Van Genuchten, M. T., (2004). "Estimating uncertain flow and transport parameters using a sequential uncertainty fitting procedure." Vadose Zone Journal, Vol. 3, No. 4, pp. 1340-1352. https://doi.org/10.2136/vzj2004.1340
  2. Arnold, J. G., Srinivasan, R., Muttiah, R. S., and Williams, J. R. (1998). "Large area hydrologic modeling and assessment - part I: model development." Journal of the American Water Resources Association, JAWRA, Vol. 34, No. 1, pp. 73-89. https://doi.org/10.1111/j.1752-1688.1998.tb05961.x
  3. Bae, D. H., Trinh, H. L., and Nguyen, H. M. (2018). "Uncertainty estimation of the SURR model parameters and input data for the Imjin River basin using the GLUE method." Journal of Hydro-Environment Research, Vol. 20, pp. 52-62. https://doi.org/10.1016/j.jher.2018.05.001
  4. Beven, K. (2009). Environmental modelling: an uncertain future?. Routledge, New York USA.
  5. Beven, K. J., and Binley, A. M., (1992). "The future of distributed models: model calibration and uncertainty prediction." Hydrological Process, Vol. 6, No. 3, pp. 279-298 https://doi.org/10.1002/hyp.3360060305
  6. Beven, K., and Freer, J. (2001). "Equifinality, data assimilation, and uncertainty estimation in mechanistic modelling of complex environmental systems using the GLUE methodology." Journal of Hydrology, Vol. 249, No. 1-4, pp. 11-29. https://doi.org/10.1016/S0022-1694(01)00421-8
  7. Chow, V. T., Maidment, D. R., and Mays, L. W. (1988). Applied hydrology. McGraw-Hill, New York.
  8. Environmental Geographic Information Service (2014). Ministry of Environment, accessed 30 September 2019, .
  9. Freer, J., Beven, K. J., and Ambroise, B. (1996). "Bayesian estimation of uncertainty in runoff prediction and the value of data: an application of the GLUE approach." Water Resources Research, Vol. 32, No. 7, pp. 2161-2173. https://doi.org/10.1029/95WR03723
  10. Hapuarachchi, H. A. P., Zhijia, L., and Shouhui, W. (2001). "Application of SCE-UA method for Calibrating the Xinanjiang watershed model." Journal of Lake Sciences, Vol. 12, No. 4, pp. 304-314. https://doi.org/10.3321/j.issn:1003-5427.2000.04.003
  11. Jin, X., Xu, C. Y., Zhang, Q., and Singh, V. P. (2010). "Parameter and modeling uncertainty simulated by GLUE and a formal Bayesian method for a conceptual hydrological model." Journal of Hydrology, Vol. 383, No. 3-4, pp. 147-155. https://doi.org/10.1016/j.jhydrol.2009.12.028
  12. Jung, Y., and Merwade, V. (2012). "Uncertainty quantification in flood inundation mapping using generalized likelihood uncertainty estimate and sensitivity analysis." Journal of Hydrologic Engineering, Vol. 17, No. 4, pp. 507-520. https://doi.org/10.1061/(ASCE)HE.1943-5584.0000476
  13. Jung, Y., Merwade, V., Kim, S., Kang, N., Kim, Y., Lee, K., Kim, G., and Kim, H. S. (2014). "Sensitivity of subjective decisions in the GLUE methodology for quantifying the uncertainty in the flood inundation map for seymour reach in Indiana, USA." Water, Vol. 6, No. 7, pp. 2104-2126. https://doi.org/10.3390/w6072104
  14. Korea National Spatial Infrastructure Portal (2019). Ministry of Land, Infrastructure and Transport, accessed 30 September 2019, .
  15. Kown, P., Ryu, J., Lee, D. J., Han, J., Sung, Y., Lim, K. J., and Kim, K. (2016). "Comparative analysis of land use change model at Gapcheon watershed." Journal of Korean Society on Water Environment, Vol. 32, No. 6, pp. 552-561. https://doi.org/10.15681/KSWE.2016.32.6.552
  16. Laloy, E., and Vrugt, J. A. (2012). "High-dimensional posterior exploration of hydrologic models using multiple-try DREAM (ZS) and high-performance computing." Water Resources Research, Vol. 48, No. 1.
  17. Montanari. A. (2005). "Large sample behaviors of the generalized likelihood uncertainty estimation (GLUE) in assessing the uncertainty of rainfall-runoff simulations." Water Resources Research, Vol. 41, No. 8, p. W08406. https://doi.org/10.1029/2004WR003826
  18. Moriasi, D., Arnold, J., et Liew, M., and Van, W. (2007). "Model evaluation guidelines for systematic quantification of accuracy in watershed simulations." American Society of Agricultural and Biological Engineers, Vol. 50, No. 3, pp. 885-900.
  19. Neitsch, S. L., Arnold, J., Kiniry, J., Williams, and J., King, K. (2005). Soil and water assessment tool. Theoretical documentation, version 2005. Texas A&M University, Temple, USA, pp. 1-618.
  20. Pampel, F. C. (2000). Logistic regression: a primer. Quantitative applications in the social sciences. Thousand oaks. Sage Publications, California USA.
  21. Ter Braak, C. J. (2006). "A Markov chain Monte Carlo version of the genetic algorithm differential evolution: Easy Bayesian computing for real parameter spaces." Statistics and Computing, Vol. 16, No. 3, pp. 239-249. https://doi.org/10.1007/s11222-006-8769-1
  22. Thrysoe, C., Arnbjerg-Nielsen, K., and Borup, M. (2019). "Identifying fit-for-purpose lumped surrogate models for large urban drainage systems using GLUE." Journal of Hydrology, Vol. 568, pp. 517-533. https://doi.org/10.1016/j.jhydrol.2018.11.005
  23. Vrugt, J. A., and Robinson, B. A. (2007). "Treatment of uncertainty using ensemble methods: comparison of sequential data assimilation and Bayesian model averaging." Water Resources Research, Vol. 43, No. 1.
  24. Vrugt, J. A., Gupta, H. V., Bouten, W., and Sorooshian, S. (2003). "A shuffled complex evolution Metropolis algorithm for optimization and uncertainty assessment of hydrologic model parameters." Water Resources Research, Vol. 39, No. 8.
  25. Yang, J., Reichert, P., Abbaspour, K. C., Xia, J., and Yang, H. (2008). "Comparing uncertainty analysis techniques for a SWAT application to the Chaohe basin in China." Journal of Hydrology, Vol. 358, No. 1-2, pp. 1-23. https://doi.org/10.1016/j.jhydrol.2008.05.012
  26. Zhang, Y., Liu, H. H., and Houseworth, J. (2011). "Modified generalized likelihood uncertainty estimation (GLUE) methodology for considering the subjectivity of likelihood measure selection." Journal of Hydrologic Engineering, Vol. 16, No. 6, pp. 558-561. https://doi.org/10.1061/(ASCE)HE.1943-5584.0000341