DOI QR코드

DOI QR Code

Designing of a Novel Core-Shell-Structured Co-free Cathode Material with Enhanced Thermal and Structural Stability for Lithium Ion Batteries

  • Shin, Ji-Woong (Department of Nano Polymer Science & Engineering, Korea National University of Transportation) ;
  • Nam, Yun-Chae (Department of Nano Polymer Science & Engineering, Korea National University of Transportation) ;
  • Son, Jong-Tae (Department of Nano Polymer Science & Engineering, Korea National University of Transportation)
  • Received : 2019.10.21
  • Accepted : 2019.11.27
  • Published : 2019.11.30

Abstract

The first commercialized cathode material, $LiCoO_2$, suffers from disadvantages such as high cost and toxicity and also possesses safety problems. The nickel-rich $LiNi_{0.9}Mn_{0.1}O_2$ cathode material, used as an alternative to $LiCoO_2$, has highly reversible capacity and high energy density. So, the nickel-rich $LiNi_{0.9}Mn_{0.1}O_2$ cathode material is widely used as an alternative to $LiCoO_2$ due to its highly reversible capacity and high energy density. However, $LiNi_{0.9}Mn_{0.1}O_2$ has several disadvantages as well, such as poor cycle performance and poor thermal instability. To address these problems, we synthesized a new material, $LiNi_{0.5}Mn_{0.5}O_2$, as a shell on the surface of a core to suppress the surface degradation. The new material showed high structural and thermal stabilities and could also maintain a high capacity. The capacity retention of the core-shell cathode (87.7%) was better than that of the core cathode (76.9%) after 50 cycles. Analysis using differential scanning calorimetry revealed that the heat generation in the core-shell cathode ($65.9Jg^{-1}$) was lower than that in the core cathode ($559.7Jg^{-1}$).

Keywords

References

  1. T. Sasaki, Y. Ukyo, and P. Novaak, J. Nat. Mater., 12, 569 (2013). https://doi.org/10.1038/nmat3623
  2. Y. P. Zhang, E. Q. Liang, J. X. Wang, B. J. Yu, C. Y. Wang, and M. W. Li, Int. J. Electrochem. Sci., 12, 9051 (2017).
  3. M. S. Islam, R. A. Davies, and J. D. Gale, Chem. Mater., 15, 4280 (2003). https://doi.org/10.1021/cm031098u
  4. Jeffery W. and Fergus, J. Power Source, 195, 939 (2010). https://doi.org/10.1016/j.jpowsour.2009.08.089
  5. D. Li, C. Yuan, J. Dong, Z. Peng, and Y. Zhou, J. Solid State Chem., 12, 323 (2008).
  6. D. Gao, Y. Li, X. Lai, J. Bi and D. Lin, J. Alloys Comp., 509, 697 (2011). https://doi.org/10.1016/j.jallcom.2010.06.167
  7. H. Arai, S. Okada, Y. Sakurai, and Yamaki, J. Solid State Ionics, 109, 295 (1998). https://doi.org/10.1016/S0167-2738(98)00075-7
  8. F. L. Liu, S. Zhang, C. Deng, Q. Wu, M. Zhang, F. L. Meng, H. Gao, and Y. H. Sun, J. Electrochem. Soc., 159, 1591 (2012). https://doi.org/10.1149/2.012210jes
  9. I.L. Radtchenko, G.B. Sukhorukov, N. Gaponik, A. Kornowski, A.L. Rogach, and H. Mohwald, Adv. Mater., 13, 1684 (2001). https://doi.org/10.1002/1521-4095(200111)13:22<1684::AID-ADMA1684>3.0.CO;2-Z
  10. Y. K. Sun, S. T. Myung, B. C. Park, and K. Amine, Chem. Mater., 18, 5159 (2006). https://doi.org/10.1021/cm061746k
  11. T. Ohzuku and Y. Makimura, Chem. Lett., 30, 744 (2001). https://doi.org/10.1246/cl.2001.744
  12. W. Ahn, S. N. Lim, K. N. Jung, S. H. Yeon, K. B. Kim, H. S. Song, and K. H. Shin, J. Alloys Comp., 609, 143 (2014). https://doi.org/10.1016/j.jallcom.2014.03.123
  13. Z. Lu, L.Y. Beaulieu, R.A. Donaberger, C.L. Thomas, and J.R. Dahna, J. Electrochem. Soc., 149, 778 (2002). https://doi.org/10.1149/1.1471541
  14. X.Q. Yang, J. McBreen, S.W. Yoon, and C.P. Grey, Electrochem. Commun., 4, 649, (2002). https://doi.org/10.1016/S1388-2481(02)00406-X
  15. S.T. Myung, S. Komaba, K. Hosoya, N. Hirosaki, U. Miura, and N. Kumagai, Chem. Mater., 17, 2427 (2005). https://doi.org/10.1021/cm050033j
  16. Z. Lu, L.Y. Beaulieu, R.A. Donaberger, C.L. Thomas, and J.R. Dahn, J. Electrochem. Soc., 149, 778 (2002). https://doi.org/10.1149/1.1471541
  17. Y. K. Sun, S. T. Myung, M. H. Kim, J. Prakash, and K. Amine, J. Am. Chem. Soc., 127, 13411 (2005). https://doi.org/10.1021/ja053675g
  18. S.H. Kang, J. Kim, M.E. Stoll, D. Abraham, Y.K. Sun, and K. Amine, J. Power Source, 112, 41 (2002). https://doi.org/10.1016/S0378-7753(02)00360-9
  19. S. Jouanneau, D.D. MacNeil, Z. Lu, S.D. Beattie, G. Murphy, and J.R. Dahn, J. Electrochem. Soc., 150, 1299 (2003). https://doi.org/10.1149/1.1602077
  20. Y. K. Sun, D. J. Lee, Y. J. Lee, Z. Chen, and S. T. Myung, ACS Appl. Mater Interfaces, 5, 11434 (2013). https://doi.org/10.1021/am403684z
  21. Y. K. Sun, D. H. Kim, C. S. Yoon, S. T. Myung, J. Prakash and K. Amine, Adv. Funct. Mater., 20, 485 (2010). https://doi.org/10.1002/adfm.200901730
  22. Y. K. Sun, B. R. Lee, H. J. Noh, H. Wu, S. T. Myung and K. Amine, J. Mater. Chem., 21, 10108 (2011) https://doi.org/10.1039/c0jm04242k