DOI QR코드

DOI QR Code

A Property of Seismic Response with Log-normal Distribution at SDOF Structure

단자유도계 구조물의 로그정규분포 지진응답 특성

  • Received : 2019.10.11
  • Accepted : 2019.11.20
  • Published : 2019.11.28

Abstract

This study suggests a method for deriving earthquake response based on log-normal distribution in order to obtain realistic and reliable probability and statistical seismic response of structures. The development of three earthquake suites were presented, with a brief description of 2%, 10%, and 50% in 50 years probability of exceedance according the USGS Los Angeles probabilistic seismic hazard maps. In order to analyze the basic dynamic behavior, a Single-Degree-of-Freedom (SDOF) structure was selected and the seismic response spectrum representing the response of each natural period was plotted. Overall, the mean response values presented through the log-normal distribution is lower than the standard normal distribution. Thus, it is considered that the former method can be provided as the effective cost on performance-based seismic design more than the latter one.

본 연구에서는 지진하중에 대한 구조물의 동적해석 과정에서 실제적이고 신뢰성 있는 확률 통계적 지진응답 결과를 얻기 위해 로그정규분포 기반 지진응답 도출 방안을 제안하였다. 이를 위해 미국지질조사국(USGS)에서 제시한 로스앤젤레스 지역 지진재해도에 따라 50년 동안의 발생 초과확률이 2%, 5%, 10%인 30개 지진데이터들을 활용하였다. 해석 대상으로서는 기본적인 동적거동 파악을 위해 단자유도계를 선정, 이의 고유진동주기 별 응답을 나타내는 응답 스팩트럼을 도식하여 응답 추이를 분석하였다. 최종적으로 도출된 로그정규분포 기반 응답의 경우 기존의 정규분포 기반 응답에 비해 모든 고유주기 영역에서 상대적으로 낮은 응답을 보였다. 제안된 로그정규분포 기반의 지진응답 평가는 성능기반내진설계를 위한 경제적 평가 방식으로서의 대안이 될 수 있을 것으로 기대된다.

Keywords

References

  1. S. S. Rao. (2011). Mechanical Vibration, 5 th Ed. Upper Saddle River, NJ : Prentice-Hall.
  2. D. H. Kwon, S. H. Jang, H. J. Mun & M. H. Chey. (2019). The Running Vibration Assessment of Daegu Metropolitan Transit using Smartphone Acceleration Sensor. Journal of the Korea Convergence Society, 10(6), 179-184. DOI : 10.15207/JKCS.2019.10.6.179
  3. Y. Bozorgnia & V. V. Bertero. (2004). Earthquake Engineering - From Engineering Seismology to Performance-Based Engineering. Boca Raton, London : CRC Press.
  4. S. H. Jang, D. H. Kwon, C. G. Hwang, S. Y. Choi & M. H. Chey. (2019). Earthquake Damage Assessment of Buildings in Urban Area using Disaster Management Platform. Journal of the Korea Convergence Society, 10(6), 25-31. DOI : 10.15207/JKCS.2019.10.6.025
  5. N. M. Newmark & W. J. Hall. (1982). Earthquake Spectra and Design, Engineering Monographs on Earthquake Criteria, Structural Design and Strong Motion Records, 3. Earthquake Engineering Research Institute, Oakland, CA.
  6. A. K. Chopra. (2011). Dynamics of Structures: Theory and Applications to Earthquake Engineering, 4 th Ed. Upper Saddle River, NJ, Prentice-Hall.
  7. M. Paz. (1991). Structural Dynamics - Theory and Computation, 3 rd Ed.. New York : VNR.
  8. L. R. Barroso, J. G. Chase & S. Hunt. (2003). Resettable smart dampers for multi-level seismic hazard mitigation of steel moment frames. Journal of Structural Control, 10(1), 41-58. DOI : 10.1002/stc.16
  9. J. G. Chase, L. R. Barroso & S. Hunt. (2003). Quadratic jerk regulation and the seismic control of civil structures. Earthquake Engineering & Structural Dynamics, 32(13), 2047-2062. DOI : 10.1002/eqe.314
  10. K. Mulligan, J. G. Chase, J. B. Mander, M. Fougere, B. L. Deam, G. Danton & R. B. Elliott. (2006). Hybrid experimental analysis of semi-active rocking wall systems. Proc New Zealand Society of Earthquake Engineering Conference (NZSEE), Napier, New Zealand.
  11. G. W. Rodgers, J. B. Mander, J. G. Chase, K. J. Mulligan, B. L. Deam & A. J. Carr. (2007). Re-shaping hysteretic behaviour - Spectral analysis and design equations for semi-active structures. Earthquake Engineering & Structural Dynamics, 36(1), 77-100. DOI : 10.1002/eqe.624
  12. E. Limpert, W. A. Stahel & M. Abbt. (2001). Log-normal distributions across the sciences: Keys and clues, Bioscience, 51(5), 341-352. https://doi.org/10.1641/0006-3568(2001)051[0341:LNDATS]2.0.CO;2
  13. P. Sommerville, N. Smith, S. Punyamurthula & J. Sun. (1997). Development of ground motion time histories for Phase II of the FEMA/SAC steel project.
  14. B. Moharz. (1976). A Study of Earthquake Response Spectra for Different Geological Conditions. Bulletin of the Seismological Society of America, 66(3), 915-935.
  15. S. J. Hunt. (2002). Semi-active smart-dampers and resetable actuators for multi-level seismic hazard mitigation of steel moment resisting frames. ME Thesis, University of Canterbury, Christchurch, New Zealand.
  16. J. G. Chase, G. W. Wodgers, K. J. Mulligan, J. B. Mander & R. P. Dhakal. (2007). Probablistic Analysis and Non-Linear Semi-Active Base Isolation Spectra for Aseismic Design, 8th Pacific Conference on Earthquake Engineering, Dec, 5-7, Singapore.
  17. M. H. Chey. (2007). Passive and Semi-Active Tuned Mass Damper Building Systems. Ph.D. Thesis, University of Canterbury, Christchurch, New Zealand.
  18. R. P. Kennedy, C. A. Cornell, R. D. Campbell, S. Kaplan, & H. F. Perla. (1980). Probabilistic Seismic Safety Study of an Existing Nuclear-Power Plant. Nuclear Engineering and Design, 59(2), 315-338. DOI : 10.1016/0029-5493(80)90203-4
  19. J. L. Cui, M. H. Chey & S. I. Kim. (2016). Seismic Performance of Urban Structures with Various Horizontal Irregularities using Equivalent Static Analysis. Journal of Convergence for Information Technology, 6(1), 25-32. DOI : 10.22156/CS4SMB.2016.6.1.025