DOI QR코드

DOI QR Code

해양무인체계와 위성 원격탐사 자료를 이용한 XBT 기반의 황해 수중음속 정확도 향상 방안

Improvement of the accuracy of XBT based underwater sound speed using the unmanned maritime system and satellite remote sensing data in the Yellow Sea

  • 투고 : 2019.09.24
  • 심사 : 2019.11.14
  • 발행 : 2019.11.30

초록

염분의 변화가 심한 황해의 해양환경 조건에서 정확한 해수음속을 산출하기 위한 논리적 방안을 제시하였다. 본 방안은 미항공우주국에서 개발한 Aqua 및 Soil Moisture Active Passive(SMAP)위성자료를 기반으로 하계절 30.5 psu 미만의 저염분수의 확장과 수온역전 현상 발생 위치를 식별하고 그 위치에 수심별 수온염분 측정센서인 Conductivity, Temperature, and Depth(CTD)가 탑재된 해양관측용 무인체계를 투입하여 음속이 적재적소에 정확히 측정하는 방안을 제시하였고 이의 원활한 수행을 위한 흐름도(flow chart)로 정리하였다. 본 방안을 통하여 염분의 변화폭이 증대되는 특이 해양환경을 조기에 식별하여 소모성 연직 수온 측정기인 Expandable Bathy Thermograph (XBT)로 음속을 계산할 때 정확도의 저하가 발생 되지 않도록 하였다.

A logical measure is suggested to estimate an accurate Sound Speed Profile (SSP) for the unusual variation of salinity in the Yellow Sea. Based on National Aeronautics and Space Administration (NASA)'s Aqua and Soil Moisture Active Passive (SMAP) satellite data, this measure identifies the area of temperature inversion effect and expansion of low salinity (<30.5 psu) water. Subsequently, on the area, the Conductivity, Temperature, and Depth (CTD) mounted unmanned maritime system estimates accurate SSP. In order to carry out this measure conveniently, a flow chart is demonstrated in this research. By using this measure which finds the high variational salinity area, the inaccuracy issue for calculating SSP from Expandable Bathy Thermograph (XBT) is expected to be solved.

키워드

참고문헌

  1. R. J. Urick, Principle of Underwater Sound, 3rd Ed. (McGraw-hill Book Company, New York, 1983), pp. 114.
  2. S. Lim, "Analysis of differences between the sonic layer depth and the mixed layer depth in the East Sea" (in Korean), J. Korea Inst. Inf. Commun. Eng. 19, 1259-1268 (2015). https://doi.org/10.6109/jkiice.2015.19.5.1259
  3. What is an Expendable Bathythermograph, or "XBT"?, https://oceanexplorer.noaa.gov/facts/xbt.html/, (Last viewed September 8, 2019).
  4. C. D. Tollefsen, "Recommendations for calculating sound speed profiles from field data," Defence R&D Canada - Atlantic, Tech. Rep., 2013.
  5. H. Medwin, "Speed of sound in water: A simple equation for realistic parameters," J. Acoust. Soc. Am. 58, 1318-1319 (1975). https://doi.org/10.1121/1.380790
  6. Tutorial: Speed of Sound, https://dosits.org/tutorials/science/tutorial-speed/, (Last viewed January 31, 2019).
  7. Calculated Sound Speed, http://turo.com.au/index.php/2-uncategorised/6-calculated-sound-speed/, (Last viewed January 31, 2019).
  8. H. J. Lie, C. H. Cho, J. H. Lee, and S. Lee, "Structure and eastward extension of the Changjiang River plume in the East China Sea," J. Geophys. Res. 108, 22 (2003).
  9. K. H. Oh, J. H. Lee, S. Lee, and I. C. Pang, "Intrusion of low - salinity water into the Yellow Sea Interior in 2012," Ocean Sci. J. 49, 343-356 (2014). https://doi.org/10.1007/s12601-014-0032-7
  10. J. Hao, Y. Chen, and F. Wang, "Temperature inversion in China Seas," J. Geophys. Res. 115, 1-12 (2010).
  11. H. J. Lie, C. H. Cho, and K. T. Jung, "Occurrence of large temperature inversion in the thermohaline frontal zone at the Yellow Sea entrance in winter and its relation to advection," J. Geophys. Res. 120, 417-435 (2015).
  12. J. Kim, T. Bok, D. Paeng, I. Pang, and C. Lee, "Acoustic channel formation and sound speed variation by low-salinity water in the western sea of Jeju during summer" (in Korean), J. Acoust. Soc. Kr. 32, 1-13 (2013). https://doi.org/10.7776/ASK.2013.32.1.001
  13. S. H. Kim, B. N. Kim, E. Kim, B. K. Choi, and D. S. Kim, "Effects of water temperature inversion layer on underwater sound propagation in the East China Sea," Jpn. J. Appl. Phys. 56, 07JG05 (2017). https://doi.org/10.7567/JJAP.56.07JG05
  14. Slocum G3 Glider, http://www.teledynemarine.com/slocum-glider (Last viewed September 8, 2019).
  15. Argo, http://www.argo.ucsd.edu/, (Last viewed January 14, 2019).
  16. Aqua Earth-observing Satellite Mission, https://aqua.nasa.gov/, (Last viewed January 14, 2019).
  17. SMAP Soil Moisture Active Passive, https://smap.jpl.nasa.gov/, (Last viewed January 14, 2019).
  18. T. Meissner, F. Wentz, and A. Manaster, "NASA/RSS SMAP salinity: Version 3.0 validated release," Remote Sensing Systems, Santa Rosa, CA, Tech. Rep., 1-30, 2018.
  19. R. Schlitzer, Ocean Data View, http://odv.awi.de/, (Last viewed January 14, 2016).
  20. M. M. Zweng, J. R. Reagan, J. I. Antonov, R. A. Locarnini, A. V. Mishonov, T. P. Boyer, H. E. Garcia, O. K. Baranova, D. R. Johnson, D. Seidov, and M. M. Biddle, "World ocean atlas 2013, volume 2: Salinity," S. Levitus, Ed., A. Mishonov Technical Ed.; NOAA Atlas NESDIS, Tech. Rep., 2013.
  21. H. Kim, J. Kim, and D. Paeng, "Analysis of surface sound channel by low salinity water and its midfrequency acoustic characteristics in the East China Sea and the Gulf of Guinea" (in Korean), J. Acoust. Soc. Kr. 34, 1-11 (2015). https://doi.org/10.7776/ASK.2015.34.1.001
  22. S. Park and P. C. Chu, "Thermal and haline fronts in the Yellow/East China Seas: surface and subsurface seasonality comparison," J. Oceanogr. 62, 617-638 (2006). https://doi.org/10.1007/s10872-006-0081-3