DOI QR코드

DOI QR Code

Removal of Perchlorate from Salt Water Using Microorganisms

미생물을 이용한 염수의 퍼클로레이트 제거

  • Ahn, Yeonghee (Department of Environmental Engineering, Dong-A University)
  • 안영희 (동아대학교 공과대학 환경공학과)
  • Received : 2019.11.20
  • Accepted : 2019.11.28
  • Published : 2019.11.30

Abstract

Perchlorate is an anionic pollutant that is very soluble and stable in water. It has been detected not only in soil/ground water but also in surface water, drinking water, food, fish, and crops. Perchlorate inhibits iodine uptake by the thyroid gland and reduces production of thyroid hormones that are primarily responsible for regulation of metabolism. Although various technologies have been developed to remove perchlorate from the environment, biodegradation is the method of choice since it is economical and environmentally friendly. However there is limited information on perchlorate biodegradation in salt environment such as salt water. Therefore this paper reviews biodegradation of perchlorate in salt water and related microorganisms. Most biodegradation research has employed heterotrophic perchlorate removal using organic compounds such as acetate as electron donors. Biodegradation research has focused on perchlorate removal from spent brine generated by ion exchange technology that is primarily employed to clean up perchlorate-contaminated ground water. Continuous removal of perchlorate at up to 10% NaCl was shown when bioreactors were inoculated with enriched salt-tolerant perchlorate-reducing bacteria. However the reactors did not show long-term stable removal of perchlorate. Microorganisms belonging to ${\beta}$- and ${\gamma}$-Proteobacteria were dominant in bioreactors used to remove perchlorate from salt water. This review will help our understanding of perchlorate removal from salt water to develop a decent biotechnology for the process.

퍼클로레이트는 물에 용해도가 높고 안정되어 잔류하는 음이온성 오염물이다. 이 오염물은 토양/지하수는 물론 지표수, 먹는물, 식품, 어류, 농작물에도 검출이 되었다. 퍼클로레이트는 갑상선에 요오드가 흡수되는 것을 방해함으로써 대사조절에 중요한 갑상선 호르몬 생산을 감소시키는 것으로 알려졌다. 오염된 환경으로부터 퍼클로레이트를 제거하기 위한 다양한 기술이 개발되었으나 미생물에 의한 생분해가 가장 환경 친화적이고 경제적인 것으로 알려졌다. 그러나 염수와 같은 염이 있는 환경에서의 퍼클로레이트 생분해에 대한 정보는 비교적 제한적이다. 본 논문에서는 미생물을 이용한 염수의 퍼클로레이트 제거와 이와 관련된 미생물에 대해 기술하였다. 대부분 염수의 퍼클로레이트 생분해 연구는 acetate와 같은 유기물을 전자공여체로 사용하는 종속영양방식으로 이루어졌으며 폐재생액(염수) 내의 퍼클로레이트 처리에 중점을 두었다. 폐재생액은 퍼클로레이트로 오염된 지하수를 정화하는데 주로 사용되는 이온교환법에서 발생한다. 내염성 미생물을 농화배양하여 식종한 생물반응기를 통해 최고 10% NaCl 농도에서도 퍼클로레이트의 연속제거가 가능한 것으로 보고되었으나 장기적으로 안정적인 제거는 제시되지 않았다. 염수 내의 퍼클로레이트 제거에 사용된 생물반응기에는 주로 ${\beta}$-와 ${\gamma}$-Proteobacteria가 우세한 것으로 나타났다. 본 논문에서 기술한 이러한 정보는 생물공학기술 개발을 위해 염수의 퍼클로레이트 생분해에 대한 이해를 하는데 도움을 줄 것이다.

Keywords

References

  1. Achenbach, L. A., Michaelidou, U., Bruce, R. A., Fryman, J. and Coates, J. D. 2001. Dechloromonas agitata gen. nov., sp. nov. and Dechlorosoma suillum gen. nov., sp. nov., two novel environmentally dominant (per)chlorate-reducing bacteria and their phylogenetic position. J. Syst. Evol. Microbiol. 51, 527-533. https://doi.org/10.1099/00207713-51-2-527
  2. Ahn, Y. and Kim, Y. 2016. Analysis of microbial community in perchlorate-degrading salt-tolerant enrichment culture. J. Kor. Soc. Environ. Technol. 17, 527-535.
  3. Ahn, Y. and Kim, T. 2014. Enrichment of salt-tolerant perchlorate- or nitrate-reducing microorganisms. Kor. patent 10-1432076.
  4. Balk, M., Gelder, T. S., Weelink, A. and Stams, A. J. M. 2008. (Per)chlorate reduction by the thermophilic bacterium Moorella perchloratireducens sp. nov., isolated from underground gas storage. Appl. Environ. Microbiol. 74, 403-409. https://doi.org/10.1128/AEM.01743-07
  5. Bardiya, N. and Bae, J. H. 2011. Dissimilatory perchlorate reduction: a review. Microbiol. Res. 166, 237-254. https://doi.org/10.1016/j.micres.2010.11.005
  6. Batista, J. R., Gingras, T. M. and Vieira, A. R. 2002. Combining Ion-exchange (IX) technology and biological reduction for perchlorate removal. Remediation 13, 21-38. https://doi.org/10.1002/rem.10052
  7. Beblo-Vranesevic, K., Huber, H. and Rettberg, P. 2017. High tolerance of Hydrogenothermus marinus to sodium perchlorate. Front. Microbiol. 8, 1369. https://doi: 10.3389/fmicb.2017.01369.
  8. Calderon, R., Godoy, F., Escudey, M. and Palma, P. 2017. A review of perchlorate ($ClO_4{^-}$) occurrence in fruits and vegetables. Environ. Monit. Assess. 189, 82. https://doi.org/10.1007/s10661-017-5793-x.
  9. Cang, Y., Roberts, D. J. and Clifford, D. A. 2004. Development of cultures capable of reducing perchlorate and nitrate in high salt solutions. Water Res. 38, 3322-3330. https://doi.org/10.1016/j.watres.2004.04.020
  10. Cao, F., Jaunat, J., Sturchio, N., Cances, B., Morvan, X., Devos, A., Barbin, V. and Ollivier, P. 2019. Worldwide occurrence and origin of perchlorate ion in waters: A review. Sci. Total Environ. 661, 737-749. https://doi.org/10.1016/j.scitotenv.2019.01.107
  11. Coates, J. D. and Achenbach, L. A. 2004. Microbial perchlorate reduction: Rocket-fueled metabolism. Nat. Rev. Microbiol. 2, 569-580. https://doi.org/10.1038/nrmicro926
  12. Carlstrom, C. I., Loutey, D. E., Wang, O., Engelbrektson, A., Clark, I., Lucas, L. N., Somasekhar, P. Y. and Coates, J. D. 2015. Phenotypic and genotypic description of Sedimenticola selenatireducens strain CUZ, a marine (per)chlorate-respiring gammaproteobacterium, and its close relative the chlorate-respiring Sedimenticola strain NSS. Appl. Environ. Microbiol. 81, 2717-2726. https://doi.org/10.1128/AEM.03606-14
  13. Chung, J., Nerenberg, R. and Rittmann, B. E. 2007. Evaluation for biological reduction of nitrate and perchlorate in brine water using the hydrogen-based membrane biofilm reactor. J. Environ. Eng. 133, 157-164. https://doi.org/10.1061/(ASCE)0733-9372(2007)133:2(157)
  14. Chung, J., Shin, S. and Oh, J. 2009. Characterization of a microbial community capable of reducing perchlorate and nitrate in high salinity. Biotechnol. Lett. 31, 959-966. https://doi.org/10.1007/s10529-009-9960-1
  15. Chung, J., Shin, S. and Oh, J. 2010. Biological reduction of nitrate and perchlorate in brine water using up-flow packed bed reactors. J. Environ. Sci. Heal. A 45, 1109-1118. https://doi.org/10.1080/10934529.2010.486343
  16. Dobson, S. J. and Franzmann, P. D. 1996. Unification of the genera Deleya (Baumann et al. 1983), Halomonas (Vreeland et al. 1980), and Halovibrio (Fendrich 1988) and the species Paracoccus halodenitrificans (Robinson and Gibbons 1952) into a single genus, Halomonas, and placement of the genus Zymobacter in the family Halomonadaceae. Int. J. Syst. Bacteriol. 46, 550-558. https://doi.org/10.1099/00207713-46-2-550
  17. Gingras, M. T. and Batista, R. J. 2002. Biological reduction of perchlorate in ion exchange regenerant solutions containing high salinity and ammonium levels. J. Environ. Monit. 4, 96-101. https://doi.org/10.1039/b107358n
  18. Greene, R., Timms, W., Rengasamy, P., Arshad, M. and Cresswell, R. 2016. Soil and Aquifer Salinization: Toward an Integrated Approach for Salinity Management of Groundwater, pp 377-412. In: Jakeman, A. J., Barreteau, O., Hunt, R. J., Rinaudo, J. D. and Ross, A. (eds), Integrated Groundwater Management. Springer: Cham, Switzerland.
  19. Gu, B., Brown, G. M., Maya, L., Lance, M. J. and Moyer, B. A. 2001. Regeneration of perchlorate ($ClO_4{^-}$)-loaded anion exchange resins by a novel tetrachloroferrate ($FeCl_4{^-}$) displacement technique. Environ. Sci. Technol. 35, 3363-3368. https://doi.org/10.1021/es010604i
  20. Gu, B. and Coates, J. D. 2006. Perchlorate: Environmental occurrence, interactions and treatment. Springer. 10.1007/0-387-31113-0.
  21. Gu, B., Brown, G. M. and Chiang, C. C. 2007. Treatment of perchlorate-contaminated groundwater using highly selective, regenerable ion-exchange technologies. Environ. Sci. Technol. 41, 6277-6282. https://doi.org/10.1021/es0706910
  22. He, L., Zhong, Y., Yao, F., Chen, F., Xie, T., Wu, B., Hou, K., Wang, D., Li, X. and Yang, Q. 2019. Biological perchlorate reduction: which electron donor we can choose? Environ. Pollut. Res. 26, 16906-16922. https://doi.org/10.1007/s11356-019-05074-5
  23. Hiremath, T., D., Roberts, J., Lin, X., Clifford, D. A., Gillogly, T. and Lehman, G. 2006. Biological treatment of perchlorate in spent ISEP ion-exchange brine. Environ. Eng. Sci. 23, 1009-1016. https://doi.org/10.1089/ees.2006.23.1009
  24. Interstate Technology Regulatory Council (ITRC). 2005. Perchlorate: Overview of Issues, Status, and Remedial Options. http://www.itrcweb.org/GuidanceDocuments/PERC-1.pdf
  25. Kim, H., Kim, J. and Lee, Y. 2007. Occurrence of perchlorate in drinking water in Korea. J. Kor. Soc. Water Quality 23, 822-828.
  26. Kim, H., Kim, J., Lee, Y., Lee, J. and Kim, S. 2008. Perchlorate in advanced drinking water treatment process. J. Kor. Soc. Water Quality 24, 164-168.
  27. Lehman, S. G., Badruzzaman, M., Adham, S., Roberts, D. J. and Clifford, D. A. 2008. Perchlorate and nitrate treatment by ion exchange integrated with biological brine treatment. Wat. Res. 42, 969-976. https://doi.org/10.1016/j.watres.2007.09.011
  28. Lauretta, R., Sansone, A., Sansone, M., Romanelli, F. and Appetecchia, M. 2019. Endocrine disrupting chemicals: effects on endocrine glands. Front. Endocrinol. 10, 178. doi: 10.3389/fendo.2019.00178
  29. Logan, B. E. 1998. A review of chlorate-and perchlorate- respiring microorganisms. Bioremed. J. 2, 69-79. https://doi.org/10.1080/10889869891214222
  30. Logan, B. E., Wu, J. and Unz, R. F. 2001. Biological perchlorate reduction in high-salinity solutions. Wat. Res. 35, 3034-3038. https://doi.org/10.1016/S0043-1354(01)00013-6
  31. McAdam, E. J. and Judd, S. J. 2008. Biological treatment of ion exchange brine regenerant for re-use: a review. Sep. Purif. Technol. 62, 264-272. https://doi.org/10.1016/j.seppur.2008.01.007
  32. Ministry of Environment in Korea. 2007. Notice on amendment of law relating to conservation of water quality and water ecosystem, Notice No. 2007-419.
  33. Ministry of Environment in Korea. 2010. Guideline for the management of drinking water quality monitoring items.
  34. Motzer, W. E. 2001. Perchlorate: problems, detection, and solutions. Environ. Forensics 2, 301-311. https://doi.org/10.1006/enfo.2001.0059
  35. Nadaraja, A. V., Veetil, P. G. P. and Bhaskaran, K. 2013. Perchlorate reduction by an isolated Serratia marcescens strain under high salt and extreme pH. FEMS Microbiol. Lett. 339, 117-121. https://doi.org/10.1111/1574-6968.12062
  36. Okeke, B. C., Giblin, T. and Frankenberger, W. T. 2002. Reduction of perchlorate and nitrate by salt tolerant bacteria. Environ. Pollut. 118, 357-363. https://doi.org/10.1016/S0269-7491(01)00288-3
  37. Park, C. and Marchand, E. A. 2006. Modelling salinity inhibition effects during biodegradation of perchlorate. J. Appl. Microbiol. 101, 222-233. https://doi.org/10.1111/j.1365-2672.2006.02950.x
  38. Patel, A., Zuo, G., Lehman, S. G, Badruzzaman, M., Clifford, D. A. and Roberts, D. J. 2008. Fluidized bed reactor for the biological treatment of ion-exchange brine containing perchlorate and nitrate. Water Res. 42, 4291-4298. https://doi.org/10.1016/j.watres.2008.07.018
  39. Ryu, H. W., Nor, S. J., Moon, K. E., Cho, K. S., Cha, D. K. and Rhee, K. I. 2012. Reduction of perchlorate by salt tolerant bacterial consortia. Biores. Technol. 103, 279-285. https://doi.org/10.1016/j.biortech.2011.09.115
  40. Sahu, A. K., Conneely, T., Nusslein, K. and Ergas, S. J. 2009. Hydrogenotrophic denitrification and perchlorate reduction in ion exchange brines using membrane biofilm reactors. Biotechnol. Bioeng. 104, 483-491. https://doi.org/10.1002/bit.22414
  41. Shin, K. H., Son, A., Cha, D. K. and Kim, K. W. 2007. Review on risks of perchlorate and treatment technologies. J. Kor. Soc. Environ. Eng. 29, 1060-1068.
  42. Steinmaus, C. M. 2016. Perchlorate in Water Supplies: Sources, Exposures, and Health Effects. Curr. Environ. Health Rep. 3, 136-143. https://doi.org/10.1007/s40572-016-0087-y
  43. Swenson, H. A. and Baldwin, H. L. 1965. A primer on water quality. United States Department of Geological Survey. US Government Printing Office, WA, USA.
  44. U.S. EPA Integrated Risk Information System (IRIS). 2005. Perchlorate and Perchlorate Salts. U.S. EPA, National Center for Environmental Assessment.
  45. U.S. EPA. 2008. Interim Drinking Water Health Advisory for Perchlorate. EPA 822-R-08-025.
  46. U.S. EPA. 2012. 2012 Edition of the Drinking Water Standards and Health Advisories. EPA 822-S-12-001.
  47. U.S. EPA. 2017. Technical Fact Sheet-Perchlorate. U.S. EPA, Office of Land and Emergency Management. EPA 505-F-17-003.
  48. U.S. GAO. 2010. Perchlorate: Occurrence Is Widespread but at Varying Levels; Federal Agencies Have Taken Some Actions to Respond to and Lessen Releases. GAO-10-769.
  49. van Ginkel, S. W., Ahn, C. H., Badruzzaman, M., Roberts, D. J., Lehman, S. G., Adham, S. S. and Rittmann, B. E. 2008. Kinetics of nitrate and perchlorate reduction in ion exchange brine using the membrane biofilm reactor (MBfR). Wat. Res. 42, 4197-4205. https://doi.org/10.1016/j.watres.2008.07.012
  50. Van Ginkel, S. W., Lamendella, R., Kovacik, W. P. Jr., Santo Domingo, J. W. and Rittmann, B. E. 2010. Microbial community structure during nitrate and perchlorate reduction in ionexchange brine using the hydrogen-based membrane biofilm reactor (MBfR). Biores. Technol. 101, 3747-3750. https://doi.org/10.1016/j.biortech.2009.12.028
  51. Vreeland, R. H. 1987. Mechanisms of halotolerance in microorganisms. Crit. Rev. Microbiol. 14, 311-56. https://doi.org/10.3109/10408418709104443
  52. Xiao, Y., Basu, A., Kashyap, V. and Roberts, D. 2010. Experimental and numerical analysis of biological regeneration of perchlorate laden ion-exchange resins in batch reactors. Environ. Eng. Sci. 27, 75-84. https://doi.org/10.1089/ees.2009.0207
  53. Xiao, Y., Zuo, G., Roberts, D., Badruzzaman, M. and Lehman, G. 2010. Characterization of microbial populations in pilot-scale fluidized bed reactors treating perchlorate- and nitrate-laden brine. Wat. Res. 44, 4029-4036. https://doi.org/10.1016/j.watres.2010.05.006
  54. Xiao, Y. and Roberts, D. J. 2013. Kinetic analysis of a salt-tolerant perchlorate-reducing bacterium: effects of sodium, magnesium, and nitrate. Environ. Sci. Technol. 47, 8666-8673. https://doi.org/10.1021/es400835t
  55. Xu, J., Song, Y., Min, B., Steinberg, L. and Logan, B. E. 2003. Microbial degradation of perchlorate: principles and applications. Environ. Eng. Sci. 20, 405-422. https://doi.org/10.1089/109287503768335904
  56. Zhang, Y., Chen, J. X., Wen, L. L., Tang, Y. and Zhao, H. P. 2016. Effects of salinity on simultaneous reduction of perchlorate and nitrate in a methane-based membrane biofilm reactor. Environ. Sci. Pollut. Res. 23, 24248-24255. https://doi.org/10.1007/s11356-016-7678-x
  57. Zhong, Z., Else, T., Amy, P. and Batista, J. R. 2001. Evaluation of in-situ biodegradation of perchlorate in a contaminated site, pp 257-265. In: Leeson, A., Peyton, B. M., Means, J. L. and Magar, V. S. (eds.), Bioremediation of inorganic compounds: The Sixth International In-situ and On-site Bioremediation Symposium. Vol. 6. Battelle Press: Columbus, OH, USA.
  58. Zuo, G., Roberts, D. J., Lehman, S. G., Jackson, G. W., Fox, G. E. and Willson, R. C. 2009. Molecular assessment of salt-tolerant, perchlorate- and nitrate-reducing microbial cultures. Water Sci. Technol. 60. 1745-1756. https://doi.org/10.2166/wst.2009.635