DOI QR코드

DOI QR Code

HMGB1/Snail cascade에 의한 epithelial-mesenchymal transition 및 glycolytic switch, mitochondrial repression 유도

High-mobility Group Box 1 Induces the Epithelial-mesenchymal Transition, Glycolytic Switch, and Mitochondrial Repression via Snail Activation

  • 이수연 (부산대학교 자연과학대학 분자생물학과) ;
  • 주민경 (부산대학교 자연과학대학 분자생물학과) ;
  • 전현민 (부산대학교 자연과학대학 분자생물학과) ;
  • 김초희 (부산대학교 자연과학대학 분자생물학과) ;
  • 박혜경 (부산대학교 한국나노바이오테크놀러지센터) ;
  • 강호성 (부산대학교 자연과학대학 분자생물학과)
  • Lee, Su Yeon (Department of Molecular Biology, College of Natural Sciences, Pusan National University) ;
  • Ju, Min Kyung (Department of Molecular Biology, College of Natural Sciences, Pusan National University) ;
  • Jeon, Hyun Min (Department of Molecular Biology, College of Natural Sciences, Pusan National University) ;
  • Kim, Cho Hee (Department of Molecular Biology, College of Natural Sciences, Pusan National University) ;
  • Park, Hye Gyeong (Nanobiotechnology Center, Pusan National University) ;
  • Kang, Ho Sung (Department of Molecular Biology, College of Natural Sciences, Pusan National University)
  • 투고 : 2019.09.20
  • 심사 : 2019.11.07
  • 발행 : 2019.11.30

초록

암세포는 epithelial mesenchymal transition (EMT)를 통해 tumor invasion과 metastasis가 일어나며, 또한 정상세포와 다른 oncogenic metabolic phenotypes 획득 즉, glycolytic switch 등이 암 발생과 진행에 깊이 연관되어 있음이 잘 알려져 있다. High-mobility group box 1 (HMGB1)은 chromatin-associated nuclear protein으로 알려져 있으나, dying cells 또는 immune cells로부터 방출되기도 한다. 방출된 HMGB1은 damage-associated molecular pattern (DAMP)로서 작용하여 EMT 및 invasion, metastasis를 유도함으로서 tumor progression에 기여한다고 알려졌다. 본 연구에서 HMGB1에 의해 EMT와 glycolytic switch 유도되며, 이 과정은 Snail 의존적임을 확인하였다. 또한 HMGB1/Snail cascade는 COX subunits인 COXVIIa와 COXVIIc의 발현 억제를 통해 mitochondrial repression과 cytochrome c oxidase (COX) inhibition을 유도하였다. HMGB1은 Snail를 통해 glycolytic switch의 주요 효소인 hexokinase 2 (HK2), phosphofructokinase-2/fructose-2,6-bisphosphatase 2 (PFKFB2), phosphoglycerate mutase 1 (PGAM1)의 발현을 증가시켰다. 이들 효소는 glycolytic switch에 중요하게 관여하는 것으로 알려져 있다. 이들 해당과정의 효소들을 knockdown한 결과 HMGB1에 의한 EMT를 억제함으로써 glycolysis와 HMGB1-induced EMT가 밀접하게 연관되어 있을 제시하였다. 이상의 연구 결과들은 HMGB1/Snail cascade가 EMT 및 glycolytic switch, mitochondrial repression에 중요하게 작용할 것임을 시사한다.

Cancer cells undergo the epithelial-mesenchymal transition (EMT) and show unique oncogenic metabolic phenotypes such as the glycolytic switch (Warburg effect) which are important for tumor development and progression. The EMT is a critical process for tumor invasion and metastasis. High-mobility group box 1 (HMGB1) is a chromatin-associated nuclear protein, but it acts as a damage-associated molecular pattern molecule when released from dying cells and immune cells. HMGB1 induces the EMT, as well as invasion and metastasis, thereby contributing to tumor progression. Here, we show that HMGB1 induced the EMT by activating Snail. In addition, the HMGB1/Snail cascade was found induce a glycolytic switch. HMGB1 also suppressed mitochondrial respiration and cytochrome c oxidase (COX) activity by a Snail-dependent reduction in the expression of the COX subunits COXVIIa and COXVIIc. HMGB1 also upregulated the expression of several key glycolytic enzymes, including hexokinase 2 (HK2), phosphofructokinase-2/fructose-2,6-bisphosphatase 2 (PFKFB2), and phosphoglycerate mutase 1 (PGAM1), in a Snail-dependent manner. However, HMGB1 was found to regulate some other glycolytic enzymes including lactate dehydrogenases A and B (LDHA and LDHB), glucose transporter 1 (GLUT1), and monocarboxylate transporters 1 and 4 (MCT1 and 4) in a Snail-independent manner. Transfection with short hairpin RNAs against HK2, PFKFB2, and PGAM1 prevented the HMGB1-induced EMT, indicating that glycolysis is associated with HMGB1-induced EMT. These findings demonstrate that HMGB1 signaling induces the EMT, glycolytic switch, and mitochondrial repression via Snail activation.

키워드

참고문헌

  1. Barnard, M. E., Boeke, C. E. and Tamimi, R. M. 2015. Established breast cancer risk factors and risk of intrinsic tumor subtypes. Biochim. Biophys. Acta. 1856, 73-85.
  2. Boroughs, L. K. and DeBerardinis, R. J. 2015. Metabolic pathways promoting cancer cell survival and growth. Nat. Cell Biol. 17, 351-359. https://doi.org/10.1038/ncb3124
  3. Cairns, R. A., Harris, I. S. and Mak, T. W. 2011. Regulation of cancer cell metabolism. Nat. Rev. Cancer 11, 85-95. https://doi.org/10.1038/nrc2981
  4. Chen, Y. C., Statt, S., Wu, R., Chang, H. T., Liao, J. W., Wang, C. N., Shyu, W. C. and Lee, C. C. 2016. High mobility group box 1-induced epithelial mesenchymal transition in human airway epithelial cells. Sci. Rep. 6, 18815. https://doi.org/10.1038/srep18815
  5. Conti, L., Lanzardo, S., Arigoni, M., Antonazzo, R., Radaelli, E., Cantarella, D., Calogero, R. A. and Cavallo, F. 2013. The noninflammatory role of high mobility group box 1/Toll-like receptor 2 axis in the self-renewal of mammary cancer stem cells. FASEB J. 27, 4731-4744. https://doi.org/10.1096/fj.13-230201
  6. Dang, C. V. 2012. Links between metabolism and cancer. Genes Dev. 26, 877-890. https://doi.org/10.1101/gad.189365.112
  7. De Craene, B. and Berx, G. 2013. Regulatory networks defining EMT during cancer initiation and progression. Nat. Rev. Cancer 13, 97-110. https://doi.org/10.1038/nrc3447
  8. DeBerardinis, R. J., Lum, J. J., Hatzivassiliou, G. and Thompson, C. B. 2008. The biology of cancer: metabolic reprogramming fuels cell growth and proliferation. Cell Metab. 7, 11-20. https://doi.org/10.1016/j.cmet.2007.10.002
  9. Dong, C., Yuan, T., Wu, Y., Wang, Y., Fan, T. W., Miriyala, S., Lin, Y., Yao, J., Shi, J., Kang, T., Lorkiewicz, P., St Clair, D., Hung, M. C., Evers, B. M. and Zhou, B. P. 2013. Loss of FBP1 by Snail-mediated repression provides metabolic advantages in basal-like breast cancer. Cancer Cell 23, 316-331. https://doi.org/10.1016/j.ccr.2013.01.022
  10. Gaskell, H., Ge, X. and Nieto, N. 2018. High-mobility group Box-1 and liver disease. Hepatol. Commun. 2, 1005-1020. https://doi.org/10.1002/hep4.1223
  11. Gatenby, R. A. and Gillies, R. J. 2004. Why do cancers have high aerobic glycolysis? Nat. Rev. Cancer 4, 891-899. https://doi.org/10.1038/nrc1478
  12. Gogvadze, V., Orrenius, S. and Zhivotovsky, B. 2008. Mitochondria in cancer cells: what is so special about them? Trends Cell Biol. 18, 165-173. https://doi.org/10.1016/j.tcb.2008.01.006
  13. Gunasekaran, M. K., Virama-Latchoumy, A. L., Girard, A. C., Planesse, C., Guerin-Dubourg, A., Ottosson, L., Andersson, U., Cesari, M., Roche, R. and Hoareau, L. 2016. TLR4-dependant pro-inflammatory effects of HMGB1 on human adipocyte. Adipocyte 5, 384-388. https://doi.org/10.1080/21623945.2016.1245818
  14. Hanahan, D. and Weinberg, R. A. 2011. Hallmarks of cancer: the next generation. Cell 144, 646-674. https://doi.org/10.1016/j.cell.2011.02.013
  15. Hay, N. 2016. Reprogramming glucose metabolism in cancer: can it be exploited for cancer therapy? Nat. Rev. Cancer 16, 635-649. https://doi.org/10.1038/nrc.2016.77
  16. He, M., Kubo, H., Ishizawa, K., Hegab, A. E., Yamamoto, Y., Yamamoto, H. and Yamaya, M. 2007. The role of the receptor for advanced glycation end-products in lung fibrosis. Am. J. Physiol. Lung Cell. Mol. Physiol. 293, L1427-1436. https://doi.org/10.1152/ajplung.00075.2007
  17. Herrmann, P. C. and Herrmann, E. C. 2007. Oxygen metabolism and a potential role for cytochrome c oxidase in the Warburg effect. J. Bioenerg. Biomembr. 39, 247-250. https://doi.org/10.1007/s10863-007-9084-z
  18. Hsu, P. P. and Sabatini, D. M. 2008. Cancer cell metabolism: Warburg and beyond. Cell 134, 703-707. https://doi.org/10.1016/j.cell.2008.08.021
  19. Huang, R. and Zong, X. 2017. Aberrant cancer metabolism in epithelial-mesenchymal transition and cancer metastasis: Mechanisms in cancer progression. Crit. Rev. Oncol. Hematol. 115, 13-22. https://doi.org/10.1016/j.critrevonc.2017.04.005
  20. Kang, R., Tang, D., Schapiro, N. E., Loux, T., Livesey, K. M., Billiar, T. R., Wang, H., Van Houten, B., Lotze, M. T. and Zeh, H. J. 2014. The HMGB1/RAGE inflammatory pathway promotes pancreatic tumor growth by regulating mitochondrial bioenergetics. Oncogene 33, 567-577. https://doi.org/10.1038/onc.2012.631
  21. Kang, R., Zhang, Q., Zeh, H. J. 3rd., Lotze, M. T. and Tang, D. 2013. HMGB1 in cancer: good, bad, or both? Clin. Cancer Res. 19, 4046-4057. https://doi.org/10.1158/1078-0432.CCR-13-0495
  22. Kim, C. H., Jeon, H. M., Lee, S. Y., Ju, M. K., Moon, J. Y., Park, H. G., Yoo, M. A., Choi, B. T., Yook, J. I., Lim, S. C., Han, S. I. and Kang, H. S. 2011. Implication of snail in metabolic stress-induced necrosis. PLoS One 6, e18000. https://doi.org/10.1371/journal.pone.0018000
  23. Kroemer, G. 2006. Mitochondria in cancer. Oncogene 25, 4630-4632. https://doi.org/10.1038/sj.onc.1209589
  24. Krysko, O., Love Aaes, T., Bachert, C., Vandenabeele, P. and Krysko, D. V. 2013. Many faces of DAMPs in cancer therapy. Cell Death Dis. 4, e631. https://doi.org/10.1038/cddis.2013.156
  25. Lee, S. Y., Jeon, H. M., Ju, M. K., Jeong, E. K., Kim, C. H., Park, H. G., Han, S. I. and Kang, H. S. 2016. Dlx-2 and glutaminase upregulate epithelial-mesenchymal transition and glycolytic switch. Oncotarget 7, 7925-7939. https://doi.org/10.18632/oncotarget.6879
  26. Lee, S. Y., Jeon, H. M., Ju, M. K., Jeong, E. K., Kim, C. H., Yoo, M. A., Park, H. G., Han, S. I. and Kang, H. S. 2015. Dlx-2 is implicated in TGF-beta- and Wnt-induced epithelial-mesenchymal, glycolytic switch, and mitochondrial repression by Snail activation. Int. J. Oncol. 46, 1768-1780. https://doi.org/10.3892/ijo.2015.2874
  27. Lee, S. Y., Jeon, H. M., Ju, M. K., Kim, C. H., Yoon, G., Han, S. I., Park, H. G. and Kang, H. S. 2012. Wnt/Snail signaling regulates cytochrome C oxidase and glucose metabolism. Cancer Res. 72, 3607-3617. https://doi.org/10.1158/0008-5472.CAN-12-0006
  28. Lee, S. Y., Jeong, E. K., Ju, M. K., Jeon, H. M., Kim, M. Y., Kim, C. H., Park, H. G., Han, S. I. and Kang, H. S. 2017. Induction of metastasis, cancer stem cell phenotype, and oncogenic metabolism in cancer cells by ionizing radiation. Mol. Cancer 16, 10. https://doi.org/10.1186/s12943-016-0577-4
  29. Lee, S. Y., Ju, M. K., Jeon, H. M., Kim, C. H., Park, H. G. and Kang, H. S. 2017. The role of Phosphofructokinase-2/Fructose-2,6-bisphosphatase 2 (PFKFB2) in Wnt-induced epithelial-mesenchymal transition. J. Life Sci. 27, 1245-1255. https://doi.org/10.5352/JLS.2017.27.11.1245
  30. Lee, S. Y., Ju, M. K., Jeon, H. M., Lee, Y. J., Kim, C. H., Park, H. G., Han, S. I. and Kang, H. S. 2019. Reactive oxygen species induce epithelialmesenchymal transition, glycolytic switch, and mitochondrial repression through the Dlx2/Snail signaling pathways in MCF7 cells. Mol. Med. Rep. 20, 2339-2346.
  31. Lynch, J., Nolan, S., Slattery, C., Feighery, R., Ryan, M. P. and McMorrow, T. 2010. High-mobility group box protein 1: a novel mediator of inflammatory-induced renal epithelial-mesenchymal transition. Am. J. Nephrol. 32, 590-602. https://doi.org/10.1159/000320485
  32. Palumbo, R., Sampaolesi, M., De Marchis, F., Tonlorenzi, R., Colombetti, S., Mondino, A., Cossu, G. and Bianchi, M. E. 2004. Extracellular HMGB1, a signal of tissue damage, induces mesoangioblast migration and proliferation. J. Cell Biol. 164, 441-449. https://doi.org/10.1083/jcb.200304135
  33. Pavlova, N. N. and Thompson, C. B. 2016. The emerging hallmarks of cancer metabolism. Cell Metab. 23, 27-47. https://doi.org/10.1016/j.cmet.2015.12.006
  34. Pecina, P., Houstkova, H., Hansikova, H., Zeman, J. and Houstek, J. 2004. Genetic defects of cytochrome c oxidase assembly. Physiol. Res. 53 Suppl 1, S213-223.
  35. Peinado, H., Olmeda, D. and Cano, A. 2007. Snail, Zeb and bHLH factors in tumour progression: an alliance against the epithelial phenotype? Nat. Rev. Cancer 7, 415-428. https://doi.org/10.1038/nrc2131
  36. Pohl, S. G., Brook, N., Agostino, M., Arfuso, F., Kumar, A. P. and Dharmarajan, A. 2017. Wnt signaling in triple-negative breast cancer. Oncogenesis 6, e310. https://doi.org/10.1038/oncsis.2017.14
  37. Polyak, K. 2011. Heterogeneity in breast cancer. J. Clin. Invest. 121, 3786-3788. https://doi.org/10.1172/JCI60534
  38. Porporato, P. E., Payen, V. L., Perez-Escuredo, J., De Saedeleer, C. J., Danhier, P., Copetti, T., Dhup, S., Tardy, M., Vazeille, T., Bouzin, C., Feron, O., Michiels, C., Gallez, B. and Sonveaux, P. 2014. A mitochondrial switch promotes tumor metastasis. Cell Reports 8, 754-766. https://doi.org/10.1016/j.celrep.2014.06.043
  39. Puisieux, A., Brabletz, T. and Caramel, J. 2014. Oncogenic roles of EMT-inducing transcription factors. Nat. Cell Biol. 16, 488-494. https://doi.org/10.1038/ncb2976
  40. Sanchez-Tillo, E., Liu, Y., de Barrios, O., Siles, L., Fanlo, L., Cuatrecasas, M., Darling, D. S., Dean, D. C., Castells, A. and Postigo, A. 2012. EMT-activating transcription factors in cancer: beyond EMT and tumor invasiveness. Cell Mol. Life Sci. 69, 3429-3456. https://doi.org/10.1007/s00018-012-1122-2
  41. Sariban-Sohraby, S., Magrath, I. T. and Balaban, R. S. 1983. Comparison of energy metabolism in human normal and neoplastic (Burkitt's lymphoma) lymphoid cells. Cancer Res. 43, 4662-4664.
  42. Schulze, A. and Harris, A. L. 2012. How cancer metabolism is tuned for proliferation and vulnerable to disruption. Nature 491, 364-373. https://doi.org/10.1038/nature11706
  43. Skibinski, A. and Kuperwasser, C. 2015. The origin of breast tumor heterogeneity. Oncogene 34, 5309-5316. https://doi.org/10.1038/onc.2014.475
  44. Tang, D., Kang, R., Zeh, H. J. 3rd. and Lotze, M. T. 2010. High-mobility group box 1 and cancer. Biochim. Biophys. Acta. 1799, 131-140. https://doi.org/10.1016/j.bbagrm.2009.11.014
  45. Vander Heiden, M. G. 2011. Targeting cancer metabolism: a therapeutic window opens. Nat. Rev. Drug Discov. 10, 671-684. https://doi.org/10.1038/nrd3504
  46. Vander Heiden, M. G., Cantley, L. C. and Thompson, C. B. 2009. Understanding the Warburg effect: the metabolic requirements of cell proliferation. Science 324, 1029-1033. https://doi.org/10.1126/science.1160809
  47. Wang, Y., Shi, J., Chai, K., Ying, X. and Zhou, B. P. 2013. The role of snail in EMT and tumorigenesis. Curr. Cancer Drug Targets 13, 963-972. https://doi.org/10.2174/15680096113136660102
  48. Yang, W., Xia, Y., Hawke, D., Li, X., Liang, J., Xing, D., Aldape, K., Hunter, T., Alfred Yung, W. K. and Lu, Z. 2012. PKM2 phosphorylates histone H3 and promotes gene transcription and tumorigenesis. Cell 150, 685-696. https://doi.org/10.1016/j.cell.2012.07.018
  49. Yao, H., He, G., Yan, S., Chen, C., Song, L., Rosol, T. J. and Deng, X. 2016. Triple-negative breast cancer: is there a treatment on the horizon? Oncotarget 8, 1913-1924. https://doi.org/10.18632/oncotarget.12284
  50. Yoon, Y. S., Lee, J. H., Hwang, S. C., Choi, K. S. and Yoon, G. 2005. TGF beta1 induces prolonged mitochondrial ROS generation through decreased complex IV activity with senescent arrest in Mv1Lu cells. Oncogene 24, 1895-1903. https://doi.org/10.1038/sj.onc.1208262
  51. Yu, L. X., Yan, L., Yang, W., Wu, F. Q., Ling, Y., Chen, S. Z., Tang, L., Tan, Y. X., Cao, D., Wu, M. C., Yan, H. X. and Wang, H. Y. 2014. Platelets promote tumour metastasis via interaction between TLR4 and tumour cell-released high-mobility group box1 protein. Nat. Commun. 5, 5256. https://doi.org/10.1038/ncomms6256
  52. Yu, X., Ma, R., Wu, Y., Zhai, Y. and Li, S. 2018. Reciprocal regulation of metabolic reprogramming and epigenetic modifications in cancer. Front. Genet. 9, 394. https://doi.org/10.3389/fgene.2018.00394
  53. Zhang, J., Shao, S., Han, D., Xu, Y., Jiao, D., Wu, J., Yang, F., Ge, Y., Shi, S., Li, Y., Wen, W. and Qin, W. 2018. High mobility group box 1 promotes the epithelial-to-mesenchymal transition in prostate cancer PC3 cells via the RAGE/NF-kappaB signaling pathway. Int. J. Oncol. 53, 659-671. https://doi.org/10.3892/ijo.2018.4420
  54. Zheng, H. and Kang, Y. 2014. Multilayer control of the EMT master regulators. Oncogene 33, 1755-1763. https://doi.org/10.1038/onc.2013.128
  55. Zhu, L., Li, X., Chen, Y., Fang, J. and Ge, Z. 2015. High-mobility group box 1: a novel inducer of the epithelial-mesenchymal transition in colorectal carcinoma. Cancer Lett. 357, 527-534. https://doi.org/10.1016/j.canlet.2014.12.012