참고문헌
- Barnard, M. E., Boeke, C. E. and Tamimi, R. M. 2015. Established breast cancer risk factors and risk of intrinsic tumor subtypes. Biochim. Biophys. Acta. 1856, 73-85.
- Boroughs, L. K. and DeBerardinis, R. J. 2015. Metabolic pathways promoting cancer cell survival and growth. Nat. Cell Biol. 17, 351-359. https://doi.org/10.1038/ncb3124
- Cairns, R. A., Harris, I. S. and Mak, T. W. 2011. Regulation of cancer cell metabolism. Nat. Rev. Cancer 11, 85-95. https://doi.org/10.1038/nrc2981
- Chen, Y. C., Statt, S., Wu, R., Chang, H. T., Liao, J. W., Wang, C. N., Shyu, W. C. and Lee, C. C. 2016. High mobility group box 1-induced epithelial mesenchymal transition in human airway epithelial cells. Sci. Rep. 6, 18815. https://doi.org/10.1038/srep18815
- Conti, L., Lanzardo, S., Arigoni, M., Antonazzo, R., Radaelli, E., Cantarella, D., Calogero, R. A. and Cavallo, F. 2013. The noninflammatory role of high mobility group box 1/Toll-like receptor 2 axis in the self-renewal of mammary cancer stem cells. FASEB J. 27, 4731-4744. https://doi.org/10.1096/fj.13-230201
- Dang, C. V. 2012. Links between metabolism and cancer. Genes Dev. 26, 877-890. https://doi.org/10.1101/gad.189365.112
- De Craene, B. and Berx, G. 2013. Regulatory networks defining EMT during cancer initiation and progression. Nat. Rev. Cancer 13, 97-110. https://doi.org/10.1038/nrc3447
- DeBerardinis, R. J., Lum, J. J., Hatzivassiliou, G. and Thompson, C. B. 2008. The biology of cancer: metabolic reprogramming fuels cell growth and proliferation. Cell Metab. 7, 11-20. https://doi.org/10.1016/j.cmet.2007.10.002
- Dong, C., Yuan, T., Wu, Y., Wang, Y., Fan, T. W., Miriyala, S., Lin, Y., Yao, J., Shi, J., Kang, T., Lorkiewicz, P., St Clair, D., Hung, M. C., Evers, B. M. and Zhou, B. P. 2013. Loss of FBP1 by Snail-mediated repression provides metabolic advantages in basal-like breast cancer. Cancer Cell 23, 316-331. https://doi.org/10.1016/j.ccr.2013.01.022
- Gaskell, H., Ge, X. and Nieto, N. 2018. High-mobility group Box-1 and liver disease. Hepatol. Commun. 2, 1005-1020. https://doi.org/10.1002/hep4.1223
- Gatenby, R. A. and Gillies, R. J. 2004. Why do cancers have high aerobic glycolysis? Nat. Rev. Cancer 4, 891-899. https://doi.org/10.1038/nrc1478
- Gogvadze, V., Orrenius, S. and Zhivotovsky, B. 2008. Mitochondria in cancer cells: what is so special about them? Trends Cell Biol. 18, 165-173. https://doi.org/10.1016/j.tcb.2008.01.006
- Gunasekaran, M. K., Virama-Latchoumy, A. L., Girard, A. C., Planesse, C., Guerin-Dubourg, A., Ottosson, L., Andersson, U., Cesari, M., Roche, R. and Hoareau, L. 2016. TLR4-dependant pro-inflammatory effects of HMGB1 on human adipocyte. Adipocyte 5, 384-388. https://doi.org/10.1080/21623945.2016.1245818
- Hanahan, D. and Weinberg, R. A. 2011. Hallmarks of cancer: the next generation. Cell 144, 646-674. https://doi.org/10.1016/j.cell.2011.02.013
- Hay, N. 2016. Reprogramming glucose metabolism in cancer: can it be exploited for cancer therapy? Nat. Rev. Cancer 16, 635-649. https://doi.org/10.1038/nrc.2016.77
- He, M., Kubo, H., Ishizawa, K., Hegab, A. E., Yamamoto, Y., Yamamoto, H. and Yamaya, M. 2007. The role of the receptor for advanced glycation end-products in lung fibrosis. Am. J. Physiol. Lung Cell. Mol. Physiol. 293, L1427-1436. https://doi.org/10.1152/ajplung.00075.2007
- Herrmann, P. C. and Herrmann, E. C. 2007. Oxygen metabolism and a potential role for cytochrome c oxidase in the Warburg effect. J. Bioenerg. Biomembr. 39, 247-250. https://doi.org/10.1007/s10863-007-9084-z
- Hsu, P. P. and Sabatini, D. M. 2008. Cancer cell metabolism: Warburg and beyond. Cell 134, 703-707. https://doi.org/10.1016/j.cell.2008.08.021
- Huang, R. and Zong, X. 2017. Aberrant cancer metabolism in epithelial-mesenchymal transition and cancer metastasis: Mechanisms in cancer progression. Crit. Rev. Oncol. Hematol. 115, 13-22. https://doi.org/10.1016/j.critrevonc.2017.04.005
- Kang, R., Tang, D., Schapiro, N. E., Loux, T., Livesey, K. M., Billiar, T. R., Wang, H., Van Houten, B., Lotze, M. T. and Zeh, H. J. 2014. The HMGB1/RAGE inflammatory pathway promotes pancreatic tumor growth by regulating mitochondrial bioenergetics. Oncogene 33, 567-577. https://doi.org/10.1038/onc.2012.631
- Kang, R., Zhang, Q., Zeh, H. J. 3rd., Lotze, M. T. and Tang, D. 2013. HMGB1 in cancer: good, bad, or both? Clin. Cancer Res. 19, 4046-4057. https://doi.org/10.1158/1078-0432.CCR-13-0495
- Kim, C. H., Jeon, H. M., Lee, S. Y., Ju, M. K., Moon, J. Y., Park, H. G., Yoo, M. A., Choi, B. T., Yook, J. I., Lim, S. C., Han, S. I. and Kang, H. S. 2011. Implication of snail in metabolic stress-induced necrosis. PLoS One 6, e18000. https://doi.org/10.1371/journal.pone.0018000
- Kroemer, G. 2006. Mitochondria in cancer. Oncogene 25, 4630-4632. https://doi.org/10.1038/sj.onc.1209589
- Krysko, O., Love Aaes, T., Bachert, C., Vandenabeele, P. and Krysko, D. V. 2013. Many faces of DAMPs in cancer therapy. Cell Death Dis. 4, e631. https://doi.org/10.1038/cddis.2013.156
- Lee, S. Y., Jeon, H. M., Ju, M. K., Jeong, E. K., Kim, C. H., Park, H. G., Han, S. I. and Kang, H. S. 2016. Dlx-2 and glutaminase upregulate epithelial-mesenchymal transition and glycolytic switch. Oncotarget 7, 7925-7939. https://doi.org/10.18632/oncotarget.6879
- Lee, S. Y., Jeon, H. M., Ju, M. K., Jeong, E. K., Kim, C. H., Yoo, M. A., Park, H. G., Han, S. I. and Kang, H. S. 2015. Dlx-2 is implicated in TGF-beta- and Wnt-induced epithelial-mesenchymal, glycolytic switch, and mitochondrial repression by Snail activation. Int. J. Oncol. 46, 1768-1780. https://doi.org/10.3892/ijo.2015.2874
- Lee, S. Y., Jeon, H. M., Ju, M. K., Kim, C. H., Yoon, G., Han, S. I., Park, H. G. and Kang, H. S. 2012. Wnt/Snail signaling regulates cytochrome C oxidase and glucose metabolism. Cancer Res. 72, 3607-3617. https://doi.org/10.1158/0008-5472.CAN-12-0006
- Lee, S. Y., Jeong, E. K., Ju, M. K., Jeon, H. M., Kim, M. Y., Kim, C. H., Park, H. G., Han, S. I. and Kang, H. S. 2017. Induction of metastasis, cancer stem cell phenotype, and oncogenic metabolism in cancer cells by ionizing radiation. Mol. Cancer 16, 10. https://doi.org/10.1186/s12943-016-0577-4
- Lee, S. Y., Ju, M. K., Jeon, H. M., Kim, C. H., Park, H. G. and Kang, H. S. 2017. The role of Phosphofructokinase-2/Fructose-2,6-bisphosphatase 2 (PFKFB2) in Wnt-induced epithelial-mesenchymal transition. J. Life Sci. 27, 1245-1255. https://doi.org/10.5352/JLS.2017.27.11.1245
- Lee, S. Y., Ju, M. K., Jeon, H. M., Lee, Y. J., Kim, C. H., Park, H. G., Han, S. I. and Kang, H. S. 2019. Reactive oxygen species induce epithelialmesenchymal transition, glycolytic switch, and mitochondrial repression through the Dlx2/Snail signaling pathways in MCF7 cells. Mol. Med. Rep. 20, 2339-2346.
- Lynch, J., Nolan, S., Slattery, C., Feighery, R., Ryan, M. P. and McMorrow, T. 2010. High-mobility group box protein 1: a novel mediator of inflammatory-induced renal epithelial-mesenchymal transition. Am. J. Nephrol. 32, 590-602. https://doi.org/10.1159/000320485
- Palumbo, R., Sampaolesi, M., De Marchis, F., Tonlorenzi, R., Colombetti, S., Mondino, A., Cossu, G. and Bianchi, M. E. 2004. Extracellular HMGB1, a signal of tissue damage, induces mesoangioblast migration and proliferation. J. Cell Biol. 164, 441-449. https://doi.org/10.1083/jcb.200304135
- Pavlova, N. N. and Thompson, C. B. 2016. The emerging hallmarks of cancer metabolism. Cell Metab. 23, 27-47. https://doi.org/10.1016/j.cmet.2015.12.006
- Pecina, P., Houstkova, H., Hansikova, H., Zeman, J. and Houstek, J. 2004. Genetic defects of cytochrome c oxidase assembly. Physiol. Res. 53 Suppl 1, S213-223.
- Peinado, H., Olmeda, D. and Cano, A. 2007. Snail, Zeb and bHLH factors in tumour progression: an alliance against the epithelial phenotype? Nat. Rev. Cancer 7, 415-428. https://doi.org/10.1038/nrc2131
- Pohl, S. G., Brook, N., Agostino, M., Arfuso, F., Kumar, A. P. and Dharmarajan, A. 2017. Wnt signaling in triple-negative breast cancer. Oncogenesis 6, e310. https://doi.org/10.1038/oncsis.2017.14
- Polyak, K. 2011. Heterogeneity in breast cancer. J. Clin. Invest. 121, 3786-3788. https://doi.org/10.1172/JCI60534
- Porporato, P. E., Payen, V. L., Perez-Escuredo, J., De Saedeleer, C. J., Danhier, P., Copetti, T., Dhup, S., Tardy, M., Vazeille, T., Bouzin, C., Feron, O., Michiels, C., Gallez, B. and Sonveaux, P. 2014. A mitochondrial switch promotes tumor metastasis. Cell Reports 8, 754-766. https://doi.org/10.1016/j.celrep.2014.06.043
- Puisieux, A., Brabletz, T. and Caramel, J. 2014. Oncogenic roles of EMT-inducing transcription factors. Nat. Cell Biol. 16, 488-494. https://doi.org/10.1038/ncb2976
- Sanchez-Tillo, E., Liu, Y., de Barrios, O., Siles, L., Fanlo, L., Cuatrecasas, M., Darling, D. S., Dean, D. C., Castells, A. and Postigo, A. 2012. EMT-activating transcription factors in cancer: beyond EMT and tumor invasiveness. Cell Mol. Life Sci. 69, 3429-3456. https://doi.org/10.1007/s00018-012-1122-2
- Sariban-Sohraby, S., Magrath, I. T. and Balaban, R. S. 1983. Comparison of energy metabolism in human normal and neoplastic (Burkitt's lymphoma) lymphoid cells. Cancer Res. 43, 4662-4664.
- Schulze, A. and Harris, A. L. 2012. How cancer metabolism is tuned for proliferation and vulnerable to disruption. Nature 491, 364-373. https://doi.org/10.1038/nature11706
- Skibinski, A. and Kuperwasser, C. 2015. The origin of breast tumor heterogeneity. Oncogene 34, 5309-5316. https://doi.org/10.1038/onc.2014.475
- Tang, D., Kang, R., Zeh, H. J. 3rd. and Lotze, M. T. 2010. High-mobility group box 1 and cancer. Biochim. Biophys. Acta. 1799, 131-140. https://doi.org/10.1016/j.bbagrm.2009.11.014
- Vander Heiden, M. G. 2011. Targeting cancer metabolism: a therapeutic window opens. Nat. Rev. Drug Discov. 10, 671-684. https://doi.org/10.1038/nrd3504
- Vander Heiden, M. G., Cantley, L. C. and Thompson, C. B. 2009. Understanding the Warburg effect: the metabolic requirements of cell proliferation. Science 324, 1029-1033. https://doi.org/10.1126/science.1160809
- Wang, Y., Shi, J., Chai, K., Ying, X. and Zhou, B. P. 2013. The role of snail in EMT and tumorigenesis. Curr. Cancer Drug Targets 13, 963-972. https://doi.org/10.2174/15680096113136660102
- Yang, W., Xia, Y., Hawke, D., Li, X., Liang, J., Xing, D., Aldape, K., Hunter, T., Alfred Yung, W. K. and Lu, Z. 2012. PKM2 phosphorylates histone H3 and promotes gene transcription and tumorigenesis. Cell 150, 685-696. https://doi.org/10.1016/j.cell.2012.07.018
- Yao, H., He, G., Yan, S., Chen, C., Song, L., Rosol, T. J. and Deng, X. 2016. Triple-negative breast cancer: is there a treatment on the horizon? Oncotarget 8, 1913-1924. https://doi.org/10.18632/oncotarget.12284
- Yoon, Y. S., Lee, J. H., Hwang, S. C., Choi, K. S. and Yoon, G. 2005. TGF beta1 induces prolonged mitochondrial ROS generation through decreased complex IV activity with senescent arrest in Mv1Lu cells. Oncogene 24, 1895-1903. https://doi.org/10.1038/sj.onc.1208262
- Yu, L. X., Yan, L., Yang, W., Wu, F. Q., Ling, Y., Chen, S. Z., Tang, L., Tan, Y. X., Cao, D., Wu, M. C., Yan, H. X. and Wang, H. Y. 2014. Platelets promote tumour metastasis via interaction between TLR4 and tumour cell-released high-mobility group box1 protein. Nat. Commun. 5, 5256. https://doi.org/10.1038/ncomms6256
- Yu, X., Ma, R., Wu, Y., Zhai, Y. and Li, S. 2018. Reciprocal regulation of metabolic reprogramming and epigenetic modifications in cancer. Front. Genet. 9, 394. https://doi.org/10.3389/fgene.2018.00394
- Zhang, J., Shao, S., Han, D., Xu, Y., Jiao, D., Wu, J., Yang, F., Ge, Y., Shi, S., Li, Y., Wen, W. and Qin, W. 2018. High mobility group box 1 promotes the epithelial-to-mesenchymal transition in prostate cancer PC3 cells via the RAGE/NF-kappaB signaling pathway. Int. J. Oncol. 53, 659-671. https://doi.org/10.3892/ijo.2018.4420
- Zheng, H. and Kang, Y. 2014. Multilayer control of the EMT master regulators. Oncogene 33, 1755-1763. https://doi.org/10.1038/onc.2013.128
- Zhu, L., Li, X., Chen, Y., Fang, J. and Ge, Z. 2015. High-mobility group box 1: a novel inducer of the epithelial-mesenchymal transition in colorectal carcinoma. Cancer Lett. 357, 527-534. https://doi.org/10.1016/j.canlet.2014.12.012