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THREE GEOMETRIC CONSTANTS FOR MORREY SPACES

Hendra Gunawan, Eder Kikianty, Yoshihiro Sawano,
and Christopher Schwanke

Abstract. In this paper we calculate three geometric constants, namely

the von Neumann-Jordan constant, the James constant, and the Dunkl-
Williams constant, for Morrey spaces and discrete Morrey spaces. These

constants measure uniformly nonsquareness of the associated spaces. We

obtain that the three constants are the same as those for L1 and L∞

spaces.

1. Introduction

The von Neumann-Jordan constant CNJ(X) (see [8]), the James constant
CJ(X) (see [6]) and the Dunkl-Williams constant CDW(X) (see [3]) for a Ba-
nach space X are given by

CNJ(X) := sup

{
‖x+ y‖2X + ‖x− y‖2X

2(‖x‖2X + ‖y‖2X)
: x, y ∈ X \ {0}

}
,

CJ(X) := sup {min{‖x+ y‖X , ‖x− y‖X} : x, y ∈ X, ‖x‖X = ‖y‖X = 1} ,
and

CDW(X) := sup

{
‖x‖X + ‖y‖X
‖x− y‖X

∥∥∥∥ x

‖x‖X
− y

‖y‖X

∥∥∥∥
X

: x, y ∈ X, x, y, x− y 6= 0

}
,

respectively. It is well known that 1 ≤ CNJ(X) ≤ 2 for every Banach space
X, and that CNJ(X) = 1 if and only if X is a Hilbert space. Meanwhile,√

2 ≤ CJ(X) ≤ 2 holds for every Banach space X, and CJ(X) =
√

2 if (but not
only if) X is a Hilbert space (see [2, 4]). As for the Dunkl-Williams constant,
we have 2 ≤ CDW(X) ≤ 4 and CDW(X) = 2 if and only if X is a Hilbert space
[3]. For Lebesgue spaces Lp = Lp(Rd) where 1 ≤ p ≤ ∞, we have CNJ(Lp) =
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max{22/p−1, 21−2/p} and CJ(Lp) = max{21/p, 21−1/p} [9]. Meanwhile, we know
that CDW(L1) = CDW(L∞) = 4 [7].

In this paper, we shall calculate the three constants for Morrey spaces and
discrete Morrey spaces. Let 1 ≤ p ≤ q <∞. The Morrey spaceMp

q =Mp
q(Rd)

is the set of all the measurable functions f on Rd for which

‖f‖Mp
q

:= sup
B=B(a,r)

|B|
1
q−

1
p

(∫
B

|f(y)|p dy
) 1

p

<∞,

where B(a, r) denotes the ball centered at a ∈ Rd having radius r > 0 and
Lebesgue measure |B| (see, e.g., [1]). Since Mp

q is a Banach space, it follows
from [2–4] that

CNJ(Mp
q), CJ(Mp

q) ≤ 2 and CDW(Mp
q) ≤ 4.

Our result for Morrey spaces is the following:

Theorem 1.1. If 1 ≤ p < q < ∞, then CNJ(Mp
q) = CJ(Mp

q) = 2 and
CDW(Mp

q) = 4.

Note that Mp
p = Lp holds and that their norms are identical. The above

theorem tells us that the case where q > p is quite different from the case where
q = p. When q > p, the three constants CJ(Mp

q), CNJ(Mp
q), and CDW(Mp

q)

take the same value as those for L1 and L∞ spaces.
Moving on to discrete Morrey spaces, let ω := N∪{0}. For m := (m1, . . . ,md)

∈ Zd and N ∈ ω, let

Sm,N := {k ∈ Zd : ‖k −m‖∞ ≤ N},
where ‖(m1, . . . ,md)‖∞ := max{|mi| : 1 ≤ i ≤ d} for (m1, . . . ,md) ∈ Zd. The
cardinality of Sm,N , denoted by |Sm,N |, is (2N + 1)d, for every m ∈ Zd and
N ∈ ω. Given 1 ≤ p ≤ q <∞, we define the discrete Morrey space `pq = `pq(Zd)

to be the space of all functions (sequences) x : Zd → R for which

‖x‖`pq := sup
m∈Zd,N∈ω

|Sm,N |
1
q−

1
p

 ∑
k∈Sm,N

|x(k)|p
 1

p

<∞.

We note that `pq , equipped with the above norm, is a Banach space (see [5]).
Our result for discrete Morrey spaces is the following:

Theorem 1.2. If 1 ≤ p < q <∞, then CNJ(`pq) = CJ(`pq) = 2 and CDW(`pq) =
4.

This theorem also tells us that the case where q > p is quite different from
the case where q = p (where `pp = `p).

2. Proof of Theorems

We prove both theorems by finding two elements in the space such that the
associated expressions are equal to two, two, and four, respectively.
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2.1. Proof of Theorem 1.1

Proof. Let 1 ≤ p < q < ∞, and let f(x) := |x|−d/q, x ∈ Rd, where |x|
denotes the Euclidean norm of x. Then f ∈ Mp

q(Rd) (see [10, §2]). Define
g(x) := χ(0,1)(|x|)f(x), h(x) := f(x) − g(x), and k(x) := −f(x) + 2g(x), for

x ∈ Rd. By a change of variables, we see that

‖td/qg(t·)‖Mp
q

= ‖g‖Mp
q

and

‖td/qh(t·)‖Mp
q

= ‖h‖Mp
q

for all t > 0. Since

td/qg(tx) = χ(0,1)(t|x|)f(x)

and

td/qh(tx) = χ(0,1)(t|x|)f(x)− χ[1,∞)(t|x|)f(x)

for t > 0 and x ∈ Rd, by the monotone convergence property of Morrey spaces
we have

‖f‖Mp
q

= ‖g‖Mp
q

= ‖h‖Mp
q

= ‖k‖Mp
q
∈ (0,∞).

This implies that

‖f + k‖2Mp
q

+ ‖f − k‖2Mp
q

= 4(‖f‖2Mp
q

+ ‖k‖2Mp
q
)

and

min{‖f + k‖Mp
q
, ‖f − k‖Mp

q
} = min{‖2g‖Mp

q
, ‖2h‖Mp

q
} = 2‖f‖Mp

q
= 2‖k‖Mp

q
.

By definition and the fact that both CNJ(Mp
q), CJ(Mp

q) ≤ 2, we conclude that

CNJ(Mp
q) = CJ(Mp

q) = 2,

as desired.
Finally, we calculate the Dunkl–Williams constant using the same ideas as

in [7]. We consider f and (1 + r)g + (1− r)h for r ∈ (0, 1). We calculate

‖f‖Mp
q
+‖(1 + r)g + (1− r)h‖Mp

q

‖f − (1 + r)g − (1− r)h‖Mp
q

∥∥∥∥∥ f

‖f‖Mp
q

− (1 + r)g + (1− r)h
‖(1 + r)g + (1− r)h‖Mp

q

∥∥∥∥∥
Mp

q

=
‖f‖Mp

q
+ (1 + r)‖f‖Mp

q

r‖f‖Mp
q

∥∥∥∥∥ f

‖f‖Mp
q

− (1 + r)g + (1− r)h
(1 + r)‖f‖Mp

q

∥∥∥∥∥
Mp

q

=
‖f‖Mp

q
+ (1 + r)‖f‖Mp

q

r‖f‖Mp
q

∥∥∥∥∥ 2rh

(1 + r)‖f‖Mp
q

∥∥∥∥∥
Mp

q

=
4 + 2r

1 + r
.

If we let r ↓ 0, we obtain CDW(Mp
q) = 4, as required. �
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Before we conclude this subsection, a remark may be in order. Let 1 ≤
p ≤ q < ∞. The local Morrey space LMp

q = LMp
q(Rd) is the set of all the

measurable functions f on Rd for which

‖f‖LMp
q

:= sup
B=B(0,r)

|B|
1
q−

1
p

(∫
B

|f(y)|p dy
) 1

p

<∞.

Arguing similarly as before, we see that CNJ(LMp
q) = CJ(LMp

q) = 2 and
CDW(LMp

q) = 4 whenever 1 ≤ p < q <∞.

2.2. Proof of Theorem 1.2

Proof. Let 1 ≤ p < q <∞, and let us first consider the case where d = 1. Let

n ∈ Z be an even number with n > 2
q

q−p − 1, or equivalently

(n+ 1)
1
q−

1
p < 2−

1
p .

Consider the sequence (xk)k∈Z defined by

x0 = xn = 1, and xk = 0 for all k 6∈ {0, n}

and the sequence (yk)k∈Z defined by

y0 = 1, yn = −1, and yk = 0 for all k 6∈ {0, n}.

Then, we have

‖x‖`pq = sup
m∈Z,N∈ω

|Sm,N |
1
q−

1
p

 ∑
k∈Sm,N

|xk|p
 1

p

= max

1, |Sn
2 ,n2
|
1
q−

1
p

 ∑
k∈Sn

2
, n
2

|xk|p
1/p


= max

{
1, (n+ 1)

1
q−

1
p 2

1
p

}
.

With the choice of n above, we see that

(n+ 1)
1
q−

1
p 2

1
p < 1.

Therefore ‖x‖`pq = 1. Similarly, one may verify that ‖y‖`pq = 1. Moreover, we
may observe that

‖x+ y‖`pq = 2 and ‖x− y‖`pq = 2.

Hence, we obtain

‖x+ y‖2
`pq

+ ‖x− y‖2
`pq

2(‖x‖2
`pq

+ ‖y‖2
`pq

)
=

22 + 22

2(12 + 12)
= 2.
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Hence we conclude that CNJ(`pq) = 2. With the same choices of x and y, we
have

CJ(`pq) = sup{min{‖x+ y‖`pq , ‖x− y‖`pq} : x, y ∈ X, ‖x‖`pq = ‖y‖`pq = 1} = 2.

We shall now consider the general case where d ≥ 1. Let n ∈ Z be an even

number with n > 2
q

d(q−p) − 1, or equivalently

(n+ 1)d(
1
q−

1
p ) < 2−

1
p .

Let x ∈ `pq be the function x : Zd → R where

x(k) :=

{
1, if k = (0, 0, . . . , 0), (n, 0, . . . , 0),
0, otherwise,

and y ∈ `pq be the function y : Zd → R where

y(k) :=

 1, if k = (0, 0, . . . , 0),
−1, if k = (n, 0, . . . , 0),
0, otherwise.

Then, we have

‖x‖`pq = sup
m∈Zd,N∈ω

|Sm,N |
1
q−

1
p

 ∑
k∈Sm,N

|xk|p
 1

p

= max

1, |Sn
2 ,n2
|d(

1
q−

1
p )

 ∑
k∈Sn

2
, n
2

|xk|p
1/p


= max

{
1, (n+ 1)d(

1
q−

1
p )2

1
p

}
.

Note that with the choice of n above, we have

(n+ 1)d(
1
q−

1
p )2

1
p < 1,

whence ‖x‖`pq = 1. Similarly ‖y‖`pq = 1. Moreover, we also have

‖x+ y‖`pq = 2 and ‖x− y‖`pq = 2.

Therefore, we obtain

‖x+ y‖2
`pq

+ ‖x− y‖2
`pq

2(‖x‖2
`pq

+ ‖y‖2
`pq

)
=

22 + 22

2(12 + 12)
= 2,

whence CNJ(`pq) = 2. The same choices of x and y give

CJ(`pq) = sup{min{‖x+ y‖`pq , ‖x− y‖`pq} : x, y ∈ X, ‖x‖`pq = ‖y‖`pq = 1} = 2.

Finally, for the Dunkl–Williams constant, we use the couple x+y and (1+r)x+
(1− r)y for 0 < r < 1 and argue similarly to the case of Morrey spaces. �
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