
Bull. Korean Math. Soc. 56 (2019), No. 6, pp. 1497–1510

https://doi.org/10.4134/BKMS.b181218

pISSN: 1015-8634 / eISSN: 2234-3016

STOPPING TIMES IN THE GAME ROCK-PAPER-SCISSORS

Kyeonghoon Jeong and Hyun Jae Yoo

Abstract. In this paper we compute the stopping times in the game

Rock-Paper-Scissors. By exploiting the recurrence relation we compute

the mean values of stopping times. On the other hand, by constructing
a transition matrix for a Markov chain associated with the game, we get

also the distribution of the stopping times and thereby we compute the
mean stopping times again. Then we show that the mean stopping times

increase exponentially fast as the number of the participants increases.

1. Introduction

The game Rock-Paper-Scissors is perhaps the most famous game known
world widely for choosing a winner among participants. The rule is very simple.
Each player shows by hand one of Rock, Paper, or Scissors at the same time.
The Rock beats the Scissors and loses to the Paper. The Scissors beat the Paper
and lose to Rock, and the Paper beats the Rock and loses to the Scissors. See
the picture in Figure 1. It is natural to ask the ending time of the game when
there are a certain number of participants in the game.

The purpose of this paper is to answer this question. When a number of
participants is fixed, we will discuss the following questions: (i) the distribu-
tion of ending time, (ii) the mean ending time. We will also investigate the
asymptotic behavior of the mean ending time as the number of participants
increases. To summarize the results, we have obtained a concrete formula for
the distribution and the mean value of the ending time and showed that the
mean ending time increases exponentially fast as the number of participants
increases.

This paper is organized as follows. In Section 2, we exploit the recurrence
relation for the mean stopping times of the game. Using exponential generating
function, we compute the mean stopping times. In Section 3 we introduce a
Markov chain for the game. The transition matrix of this Markov chain will
have crucial roles in the computations of our interests. Using the transition
matrix, we represent the mass functions of the stopping times and compute the
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mean stopping times. In Section 4, we discuss the asymptotic behavior of the
mean stopping times. In Section 5, we give the proofs for the main results.

Figure 1. The game Rock-Paper-Scissors (picture taken from Wikipedia)

2. Recurrence relation

In this section we compute the mean ending time of the game started with a
certain number of participants. Here we will elucidate the recurrence relation
for the stopping times. In the next section we will introduce a different method.

For n ≥ 2, let τn be the ending time of the game with n participants, i.e.,
the time of the final winner is determined. Let En := E(τn) be the expectation
of τn. For simplicity we let τ1 = 0, i.e., E1 = 0. For n ≥ 2 and j = 1, . . . , n, let
p(n, j) be the probability that j persons survive after one round of the game
with n participants. We then have the relation: for n ≥ 2 and k ≥ 1

(2.1) P(τn = k) =

n∑
j=1

p(n, j)P(τj = k − 1).

We thus get the recurrence relation for the expectation values:

(2.2) En =

n∑
j=1

p(n, j)(Ej + 1), n ≥ 2.

From the rule of the game we easily see that

(2.3) p(n, j) =

{
1

3n−1

(
n
j

)
, j < n,

1− 2
(
2
3

)n−1 (
1− 1

2n−1

)
, j = n.

So we obtain

(2n − 1)En = 3n−1 +

n∑
j=1

(
n

j

)
Ej , n ≥ 2.(2.4)
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From this recurrence relation with the initial condition E1 = 0, we can easily
calculate

E2 =
3

2
, E3 =

9

4
, E4 =

45

14
, E5 =

157

35
,

etc.
Let us now compute the general formula for En solving the equation (2.4).

Put E0 = 0 for convenience. Define the exponential generating function of
{En} by

(2.5) E(x) :=

∞∑
n=0

En
n!
xn =

∞∑
n=2

En
n!
xn.

By (2.4) it satisfies the following functional equation

E(2x)− E(x) =
1

3
(e3x − 1− 3x) + exE(x),

that is,

E(2x) = (ex + 1)E(x) +
1

3
(e3x − 1− 3x).

Now we have

E(2x)

e2x − 1
=

E(x)

ex − 1
+

1

3

e3x − 1− 3x

e2x − 1
.

Let h(x) = 1
3
e3x−1−3x
e2x−1 =

∑∞
n=1

hn

n! x
n. By calculation, we have h1 = 3

4 , h2 = 0,

h3 = 3
8 , h4 = 3

5 , h5 = 1
4 , h6 = − 3

7 , etc. (And hn can be expressed using
Bernoulli numbers.)

If we put F (x) = E(x)
ex−1 , then F (2x) = F (x) + h(x) implies

2nF (n)(0) = F (n)(0) + hn.

Therefore we have

(2.6)
E(x)

ex − 1
=

∞∑
n=1

hn
n!(2n − 1)

xn.

Or equivalently F (x) =
∑∞
k=1 h

(
x
2k

)
. Finally, expanding (2.6), we arrive at:

Theorem 2.1. In the game Rock-Paper-Scissors with n participants, n ≥ 2,
the mean stopping time is given by

En =

n−1∑
k=1

(
n

k

)
hk

2k − 1
.(2.7)

For example, we have E4 = 4h1

1 + 6h2

3 + 4h3

7 = 3 + 3
14 once again.
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3. Markov chain of the game Rock-Paper-Scissors and stopping
times

In this section we investigate the stopping times τn with a different method.
It turns out to be convenient to introduce a stochastic matrix P in the state
space N, the set of natural numbers, as follows.

P := [p(i, j)]i,j∈N,

where, as before,

p(i, j) := P(j persons survive after one round of the game of i persons),

and it was computed in (2.3). Here we take p(i, j) = 0 for j > i and we put
p(1, 1) ≡ 1. Some of the leading terms of P are as follows.

P =


1 0 0 0 0 · · ·
2
3

1
3 0 0 0 · · ·

1
3

1
3

1
3 0 0 · · ·

4
27

2
9

4
27

13
27 0 · · ·

...
...

...
...

...
. . .

 .
It is obvious that for the Markov chain with the transition matrix P , the state
1 is recurrent (actually absorbing) and all the other states are transient [1].
Thus in the Markov chain there is only one trivial invariant measure δ1, the
Dirac measure at the point 1. We are interested in the ending time of the game.
This is the hitting time of the state 1.

Let {ei}i∈N be the canonical basis of the Hilbert space (H, 〈·, ·〉) := l2(N).
For n ≥ 2, let S[2,n] be the projection onto the subspace span{ei : 2 ≤ i ≤ n}
and we define

Pn := S[2,n]PS[2,n].

Let p(·, 1) := (p(i, 1))i∈N ∈ H and denote ψn := S[2,n]p(·, 1). Let us define the
mass function of the distribution of τn:

pn(k) := P(τn = k), k ∈ N.
We have the following results.

Theorem 3.1. In the game Rock-Paper-Scissors, let τn be the stopping time
of ending of the game. Then,

(i) τn has the mass function

pn(k) = 〈en, P k−1n ψn〉 = P k−1n ψn(n).

(ii) The moment generating function of τn is

Mn(t) := E(etτn) = 〈en,
et

I − etPn
ψn〉 =

et

I − etPn
ψn(n),

and hence the expectation and variance of τn are respectively given by

En = E(τn) = 〈en, (I − Pn)−2ψn〉 =
1

(I − Pn)2
ψn(n),
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Var(τn) = 〈en,
I + Pn

(I − Pn)3
ψn〉 − 〈en, (I − Pn)−2ψn〉2

=
I + Pn

(I − Pn)3
ψn(n)−

(
1

(I − Pn)2
ψn(n)

)2

.

Example 3.2. We compute the mean ending times for some values of n. For
n = 2, 3, 4,

P2 =
[
1
3

]
, ψ2 =

[
2
3

]
,

P3 =

[
1
3 0
1
3

1
3

]
, ψ3 =

[
2
3
1
3

]
,

P4 =

 1
3 0 0
1
3

1
3 0

2
9

4
27

13
27

 , ψ4 =

 2
3
1
3
4
27

 .
Therefore,

E2 =
1(

1− 1
3

)2 (2

3

)
=

3

2
,

E3 =
1

(I − P3)2
ψ3(3) =

9

4

[
1 0
1 1

] [
2
3
1
3

]
(3) =

9

4
,

E4 =
1

(I − P4)2
ψ4(4) =

 9
4 0 0
9
4

9
4 0

639
196

72
49

729
196

 2
3
1
3
4
27

 (4) =
45

14
.

These are the same as the corresponding values computed in Section 2.

4. Asymptotic behavior

In this section we discuss the asymptotic behavior of the mean value of
ending time. The following is the main result for the asymptotics.

Theorem 4.1. In the game Rock-Paper-Scissors, the mean ending time in-
creases exponentially fast as the number of participants increases. More pre-
cisely, we have

1

3

(
3

2

)n
≤ E(τn) ≤ 1

3
n3
(

3

2

)n
.

The lower and upper bounds we will get by considering the first exit times
from the present number of participants in the game. For the exponential
growth, however, we will introduce also a different method by which we can
learn a little bit how the dynamics of the game proceeds.1

1After the paper has been accepted for publication, by a discussion with Professor To-
moyuki Shirai, it was known that the asymptotic behavior could be substantially improved.

See the Note Added in Proof.
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4.1. Lower bound

4.1.1. Trajectory of the dynamics. First we notice that since the mean ending
time is represented by the inverses of triangular matrices, it is very helpful to
have knowledge of them.2

Lemma 4.2. Let A be an n × n triangular matrix with non-zero diagonal
elements. If we put A = D + R, where D is the diagonal part of A, then we
have

A−1 =

n−1∑
k=0

(−D−1R)kD−1.

Proof. We can write A = D(I + D−1R). We notice that D−1R is strictly
triangular. Furthermore, it is nilpotent, i.e., (D−1R)n = 0. Now we have
A−1 = (I +D−1R)−1D−1. By using the identity

(1 + x)

m∑
k=0

(−x)k = 1− (−x)m+1

for x = D−1R and m = n− 1, and the nilpotency of D−1R, we have

(I +D−1R)−1 =

n−1∑
k=0

(−D−1R)k.

This completes the proof. �

From now, let us show the exponential growth of the mean ending time. By
Theorem 3.1 we have

E(τn) = 〈en, (I − Pn)−2ψn〉

=

n∑
j=2

(I − Pn)−2(n, j)ψn(j).(4.1)

Notice that the matrix I−Pn is a lower triangular matrix of size (n−1)×(n−1).
We can write

I − Pn = Dn − Ln,
where Dn is the diagonal part of I − Pn. We notice here that Dn has strictly
positive components and Ln is strictly lower triangular with nonnegative com-
ponents. By Lemma 4.2 we have

(I − Pn)−1 =

n−2∑
k=0

(D−1n Ln)kD−1n

= D−1/2n

[
n−2∑
k=0

(
D−1/2n LnD

−1/2
n

)k]
D−1/2n .

2We have taken Lemma 4.2 and its proof from a note posted by Robert Lewis in google

search.
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We thus get

(I−Pn)−2(4.2)

= D−1/2n

[
n−2∑
k=0

(
D−1/2n LnD

−1/2
n

)k]
D−1n

[
n−2∑
l=0

(
D−1/2n LnD

−1/2
n

)l]
D−1/2n .

Since all the matrix components of Dn and Ln are nonnegative and also ψn has
positive components, we see from equations (4.1) and (4.2) that (taking just a
single term with j = [n/2] in (4.1), and k = 0 and l = 1 in (4.2))

(4.3) E(τn) ≥
(
D−2n LnD

−1
n

)
(n, [n/2])ψn([n/2]),

where [r] means the integer part of a real number r. For 2 ≤ j ≤ n, the jth
component of Dn, denoted by Dn(j), is given by

Dn(j) = 1− p(j, j) = 2

(
2

3

)j−1(
1− 1

2j−1

)
,

and

ψn(j) = p(j, 1) =
j

3j−1
.

For 2 ≤ i ≤ n and 2 ≤ j < i, we have

Ln(i, j) = Pn(i, j) =
1

3i−1

(
i

j

)
.

Therefore, plugging into (4.3) we get

E(τn) ≥ 2−2
(

3

2

)2(n−1)
1

3n−1

(
n

[n/2]

)
2−1

(
3

2

)[n/2]−1
[n/2]

3[n/2]−1
.

By Stirling’s formula we have(
n

[n/2]

)
∼ 2n+1

√
2πn

.

Thus finally we get

E(τn) ≥ C
√
n

(
3

23/2

)n
,

where C is a constant. This shows that the mean ending time grows exponen-
tially as the number of participants increases.

4.1.2. Exit times. For each n ≥ 2, let T
(n)
ex be the first exit time from the

initial state in the game starting with n participants, namely,

(4.4) T (n)
ex := inf{k ≥ 1 : #of participants < n after kth round of the game}.

We have

(4.5) P(T (n)
ex = k) =

n−1∑
j=1

p(n, n)k−1p(n, j) = p(n, n)k−1 − p(n, n)k.
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Obviously we have

E(τn) ≥ E(T (n)
ex ) =

∞∑
k=1

kP(T (n)
ex = k)

=

∞∑
k=1

k
(
p(n, n)k−1 − p(n, n)k

)
=

1

1− p(n, n)
≥ 1

3

(
3

2

)n
.

This proves the lower bound.

4.2. Upper bound

In this subsection we compute the upper bound for the asymptotic mean
stopping times of the game. The basic idea is to look at carefully the trajectory
of decreasing numbers of participants as the game goes on.

Suppose that the game starts with n participants, call it an n-block game.
As we have seen in the former subsection, we have to wait a certain time, say
n0 ≥ 0, until the game firstly exits the n-block, then it goes into a small size,
say j1-block game. There we wait another exit time, say n1, and then the game
goes into further smaller block. The game continues this way and at a certain
time it at last jumps into 1-block, the end point. The number of jumps into
smaller sized blocks runs between 1 and n− 1. Therefore, we can compute the
mean stopping time of the game as follows: (below we denote N0 := {0} ∪ N)

E(τn)(4.6)

=
n−1∑
k=1

∑
1<jk−1<···<j1<n

∑
(n0,...,nk−1)∈Nk

0

(k+n0+· · ·+nk−1)p(n, n)n0 · · · p(jk−1, jk−1)nk−1

× p(n, j1)p(j1, j2) · · · p(jk−1, 1).

Taking a change of variables nj + 1 → nj for j = 0, . . . , k − 1, and using

the formula p(i, j) in (2.3), particularly p(i, i) = 1 − 2
(
2
3

)i−1 (
1− 1

2i−1

)
≤

1−
(
2
3

)i−1
, we get

E(τn)

≤
n−1∑
k=1

∑
1<jk−1<···<j1<n

∑
(n0,··· ,nk−1)∈Nk

(n0 + · · ·+ nk−1)

(
1−

(
2

3

)n−1)n0−1

· · ·

×

(
1−

(
2

3

)jk−1−1
)nk−1−1

1

3n−1
1

3j1−1
· · · 1

3jk−1−1

(
n

j1

)(
j1
j2

)
· · ·
(
jk−1

1

)

=

n−1∑
k=1

∑
1<jk−1<···<j1<n

[(
3

2

)n−1
+ · · ·+

(
3

2

)jk−1−1
]

1

2n−1
1

2j1−1
· · · 1

2jk−1−1
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×
(
n

j1

)(
j1
j2

)
· · ·
(
jk−1

1

)
≤
(

3

2

)n−1 n−1∑
k=1

k
∑

1<jk−1<···<j1<n

1

2n−1
1

2j1−1
· · · 1

2jk−1−1

(
n

j1

)(
j1
j2

)
· · ·
(
jk−1

1

)
.

We see that(
n

j1

)(
j1
j2

)
· · ·
(
jk−1

1

)
=

n!

(n− j1)!(j1 − j2)! · · · (jk−1 − 1)!
.

Using this and taking a change of variables ji− 1→ ji for i = 1, . . . , k− 1, and
applying multinomial expansion, we get

E(τn)

≤ n

(
3

2

)n−1 n−1∑
k=1

k
∑

0<jk−1<···<j1<n−1

(n− 1)!

(n− 1− j1)!(j1 − j2)! · · · (jk−1)!

×
(

1

2

)n−1−j1 ( 1

22

)j1−j2
· · ·
(

1

2k

)jk−1

≤ n

(
3

2

)n−1 n−1∑
k=1

k

(
1

2
+

1

22
+ · · ·+ 1

2k

)n−1
≤ 1

3
n3
(

3

2

)n
.

We now have shown Theorem 4.1.

5. Proof of Theorem 3.1

In this section, we provide with the proofs of the main results.

Proof of Theorem 3.1. (i) For n ≥ 2 and k ≥ 1, it holds that

pn(1) = p(n, 1) =
3n

3n
,

pn(k) =

n∑
j1=2

p(n, j1)pj1(k − 1) =

n∑
j1=2

j1∑
j2=2

p(n, j1)p(j1, j2)pj2(k − 2)

=

n∑
j1=2

n∑
j2=2

p(n, j1)p(j1, j2)pj2(k − 2) = P 2
np·(k − 2).

In the third equation we have used the fact that p(j1, j2) = 0 for j2 > j1.
Repeating the argument we get the result.
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(ii) We use the above result to compute the moment generating function of
τn, Mn(t) := E(etτn).

Mn(t) =

∞∑
k=1

etkpn(k) =

∞∑
k=1

etk〈en, P k−1n ψn〉

= et
∞∑
k=1

〈en,
(
etPn

)k−1
ψn〉 = 〈en,

et

I − etPn
ψn〉.

Notice that since the eigenvalues of Pn lie in the open interval (0, 1), Mn(t) is
well defined in the neighborhood of t = 0. The mean value and the variance
of τn can be computed by differentiating the function Mn(t). The proof is
completed. �

Note Added in Proof

Here we give an improved result for the asymptotic behavior. We are grateful
to Professor Tomoyuki Shirai for giving us the comments and idea for the
improvement.

For two sequences f(n) and g(n) we write f(n) ∼ g(n), as usual, meaning
that limn→∞ f(n)/g(n) = 1.

Theorem 5.1. Let En := E(τn) be the mean ending time of the game Rock-
Paper-Scissors started with n participants. Then we have

En =
1

3

(
3

2

)n
+ rn,

where

rn =
1

3

1

2n − 1

((
3

2

)n
+

n∑
s=2

(
n

s

)(
3

2

)s ∞∑
l=1

l−s2δ(l)n

)
,

with δ(l) the fractional part of log2 l : 0 ≤ δ(l) = log2 l − [log2] < 1. The

remainder rn satisfies rn = o ((3/2)n), and hence particularly E(τn) ∼ 1
3

(
3
2

)n
,

with the latter the lower bound.

Proof. We recall some functions and their properties discussed in Section 2.

(5.1) h(x) =
1

3

e3x − 1− 3x

e2x − 1
=

∞∑
n=1

hn
n!
xn,

(5.2) F (x) :=
E(x)

ex − 1
=

∞∑
n=1

hn
n!(2n − 1)

xn.

We have shown the relation

(5.3) F (x) =

∞∑
k=1

h
( x

2k

)
.
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Let us introduce the function Ẽ(x) by the formula:

(5.4)
Ẽ(x)

ex − 1
=

∞∑
n=1

hn
n!2n

xn =
1

3

e
3
2x − 1− 3

2x

ex − 1
.

Therefore, we get

(5.5) Ẽ(x) = (ex − 1)h
(x

2

)
=

1

3

(
e

3
2x − 1− 3

2
x

)
=

1

3

∞∑
n=2

1

n!

(
3

2

)n
xn.

Thus, Ẽ(x) is the exponential generating function of the sequence Ẽn :=
1
3

(
3
2

)n
. On the other hand, from (5.2) and (5.4) we have

E(x)− Ẽ(x)

ex − 1
=

∞∑
n=1

hn
n!2n(2n − 1)

xn.

By (5.2), the r.h.s. of the above equation is equal to F (x/2) and using (5.3)
we get

(5.6) R(x) := E(x)− Ẽ(x) = (ex − 1)

∞∑
k=1

h
(1

2
(x/2k)

)
=:

∞∑
k=1

Rk(x).

Let us obtain a series expansion of R(x) =
∑∞
n=2

rn
n! x

n. Before going further,
we first heuristically show the bound rn ≤ c(5/4)n. It can be shown that
h(x) is convex and increasing on the region x ≥ 0 with h(0) = 0. Therefore,
for all k ≥ 2 and x > 0, h(x/2k) ≤ (1/2k−2)h(x/22). Using this together
with the inequality h(x) ≤ cex, we get (constants may change with no harm)

|E(x)−Ẽ(x)| ≤ ce 5
4x, and this proves the bound. For a rigorous proof, however,

we need some more efforts. Let’s come back to the expansion of R(x) in (5.6).
By using the formula (5.5), we get

Rk(x) = (ex − 1)h
(1

2
(x/2k)

)
=
((

ex/2
k
)2k
− 1
)
h
(1

2
(x/2k)

)
=
(

1 +

2k−1∑
l=1

elx/2
k
)(

ex/2
k

− 1
)
h
(1

2
(x/2k)

)
=
(

1 +

2k−1∑
l=1

elx/2
k
)1

3

∞∑
s=2

1

s!

(
3

2

)s
(x/2k)s.

Expanding the exponential function in the first term, we get

Rk(x) =
1

3

∞∑
n=2

1

n!

(
3

2

)n(
1

2k

)n
xn
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+
1

3

2k−1∑
l=1

∞∑
m=0

1

m!

(
l

2k

)m
xm

∞∑
s=2

1

s!

(
3

2

1

2k

)s
xs

=
1

3

∞∑
n=2

1

n!

(
3

2

)n(
1

2k

)n
xn

+
1

3

2k−1∑
l=1

∞∑
n=2

1

n!

n∑
s=2

(
n

s

)(
3

2

)s
ln−s

(
1

2k

)n
xn.

Therefore, we have

(5.7) rn =
1

3

∞∑
k=1

(3

2

)n(
1

2k

)n
+

2k−1∑
l=1

n∑
s=2

(
n

s

)(
3

2

)s
ln−s

(
1

2k

)n .

We exchange the order in the second summation:

∞∑
k=1

2k−1∑
l=1

· · · =
∞∑
m=0

2m+1−1∑
l=2m

∞∑
k=m+1

· · · .

Then, summing over k we get

(5.8) rn =
1

3

1

2n − 1

(3

2

)n
+

n∑
s=2

(
n

s

)(
3

2

)s ∞∑
m=0

2m+1−1∑
l=2m

ln−s2−mn

 .

In the second term, we change the oder of summation: since 2m ≤ l < 2m+1,
we have log2 l− 1 < m ≤ log2 l, or m = [log2 l], where [a] is the integer part of
a, i.e.,

∞∑
m=0

2m+1−1∑
l=2m

· · · =
∞∑
l=1

[log2 l]∑
m=[log2 l]

· · · .

Putting [log2 l] = log2 l− δ(l) with 0 ≤ δ(l) < 1, we have 2−[log2 l]n = l−n2δ(l)n.
Therefore, we have

(5.9) rn =
1

3

1

2n − 1

((
3

2

)n
+

n∑
s=2

(
n

s

)(
3

2

)s ∞∑
l=1

l−s2δ(l)n

)
.

This is the formula of the remainder in the statement of the theorem. We
promptly see that rn is finite. In order to get the bound of rn, let N be a fixed
large number which will be determined later. Let us consider the summation
over m in (5.8):

∑∞
m=0 am, where

am :=

2m+1−1∑
l=2m

ln−s2−mn.



STOPPING TIMES IN THE GAME ROCK-PAPER-SCISSORS 1509

We see that

am+1 =

2m+2−1∑
l=2m+1

ln−s2−(m+1)n

=

2m+1−1∑
l=2m

(
(2l)n−s2−mn2−n + (2(l + 1/2)n−s2−mn2−n

)
≤
(

1 + (1 +
1

2m+1
)n−s

)
2−sam

≤
(

1 +
1

2m+1

)n
2−(s−1)am ≤ e

n

2m+1 2−(s−1)am.

Therefore, for any k ≥ 1,

aN+k ≤

(
k∏
u=1

e
n

2N+u

)
2−k(s−1)aN ≤

(
e1/2

N
)n

2−k(s−1)aN

≤ (1 + ε)n2−k(s−1)aN ,

where we have taken N large enough so that e1/2
N ≤ 1 + ε. Thus the second

term inside the bracket in (5.8) can be bounded by

(5.10)
n∑
s=2

(
n

s

)(
3

2

)s1 +
N∑
m=1

2m+1−1∑
l=2m

ln−s2−mn + (1 + ε)n
2N+1−1∑
l=2N

ln−s2−Nn

.
Now for any 1 ≤ m ≤ N ,

n∑
s=2

(
n

s

)(
3

2

)s 2m+1−1∑
l=2m

ln−s2−mn

≤
n∑
s=2

(
n

s

)(
3

2

)s
2m2(m+1)(n−s)2−mn

≤ 2m
n∑
s=2

(
n

s

)(
3

2m+1

)s
2n−s

≤ 2m
(

2 +
3

2m+1

)n
≤ 2N (11/4)n = o(3n).(5.11)

By (5.8), (5.10), and (5.11), we have rn = o(3/2)n. The proof is completed. �
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