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Abstract. This paper analyzes a robust optimal reinsurance and invest-
ment strategy for an Ambiguity-Averse Insurer (AAI), who worries about

model misspecification and insists on seeking robust optimal strategies.

The AAI’s surplus process is assumed to follow a jump-diffusion model,
and he is allowed to purchase proportional reinsurance or acquire new

business, meanwhile invest his surplus in a risk-free asset and a risky-
asset, whose price is described by an Ornstein-Uhlenbeck process. Under

the criterion for maximizing the expected exponential utility of terminal

wealth, robust optimal strategy and value function are derived by ap-
plying the stochastic dynamic programming approach. Serval numerical

examples are given to illustrate the impact of model parameters on the

robust optimal strategies and the loss utility function from ignoring the
model uncertainty.

1. Introduction

In recent years, there are a bulk of literatures on optimal reinsurance and/or
investment problems with various objectives for insurers. To name a few,
Browne [7], Yang and Zhang [16] and Bai and Guo [4] focused on utility
maximization problems; Bäuerle [5], Zeng et al. [19], Zeng et al. [20] used
mean-variance criteria. Schimidli [14], Bai and Guo [4] investigated the opti-
mal reinsurance and investment problems to minimize the ruin probability. For
more papers, see reference therein.

All the works mentioned above assumed that the insurer has complete con-
fidence in the specific law of the motion of asset returns, including both the
surplus process and the dynamics of the risky assets the insurer invest in, and
their beliefs are represented by specific stochastic models under a single mea-
sure P . However, in reality, there is no consensus on which model should be
used when studying optimal dynamic portfolio strategies. Rather than make
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ad-hoc decisions about how much error is contained in the estimates for the
parameters of risky assets and surplus process of the insurance company, in-
vestors may consider alternative models that are close to the estimated model.
This leads to the study of robust optimal control problems, where one seeks
an optimal strategy among a family of possible situations, and the model un-
certainty is characterized by a family of probability measures. Such method
has been used successfully in quantitative finance. For example, Anderson et
al. [1] introduced the concept of ambiguity-aversion and formulated a robust
control problem for investors who worried about model uncertainty. Uppal
and Wang [15] extended Anderson et al. [1] by allowing different degrees of
ambiguity attitude toward different assets. Maenhout [10] innovated a ‘homo-
thetic robustness’ framework who insisted that the level of ambiguity should be
weighted by a state-dependent preference parameter. Maenhout [11] considered
a dynamic portfolio and consumption problem consisting model uncertainty in
the presence of a mean-reverting risk premium. Liu [9] extended Maenhout’s
model [11] to recursive preferences.

For an ambiguity-averse insurer (we call him an AAI thereafter), he would
also consider robust optimal control problems, and there has been a few papers
on such topics. For example, Yi et al. [17] and Yi et al. [18] studied the prob-
lem of robust optimal reinsurance-investment for an AAI under the Heston’s
stochastic volatility (HSV) model and Geometric Brownian Motion (GBM)
model respectively. Zheng et al. [21] obtained the robust optimal reinsurance-
investment strategy, where the stock price was modeled by a Constant Elasticity
of Variance (CEV) model. In Zeng et al. [21], he supposed that the stock was
described by a jump-diffusion (JD) model, and solved an robust equilibrium
reinsurance-investment problem.

Apart from GBM, HSV, CEV and JD models, stochastic premium models
are also good tools to describe the stock price (See Liang et al. [8] for more
extensive review). In our paper, we assume that the instantaneous rate of the
stock follows an Ornstein-Uhlenbeck process, which has been used in Rishel
[13], Bai and Guo [3] and Liang et al. [8] for other control problems. As the
growth rate of the stock is described by an Ornstein-Uhlenbeck process, which
has mean-reverting property, this model can have features of bull and bear
markets. The AAI is allowed to buy proportional reinsurance or acquire new
business, meanwhile invest in the financial market. His objective is to maximize
the exponential utility of the terminal wealth. Using the dynamic programming
theory, we derive the explicit expressions for the robust control strategies and
the corresponding value function.

The rest of the paper is organized as follows. In Section 2, we introduce the
dynamics of the financial market and the surplus process of the insurance com-
pany, and formulate the robust optimal reinsurance and investment problem.
In Section 3, using dynamic programming approach, we obtain closed-form
expressions for the robust optimal strategies and value functions. Section 4
presents some numerical examples to illustrate our results. Section 5 concludes.
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2. Model formulation

Let (Ω,F , {Ft}t∈[0,T ], P ) be a filtered probability space, where T > 0 is
a finite constant representing the investment horizon time. The filtration
{Ft}t∈[0,T ] is the reference filtration generated by the following three stochas-
tic processes: a compound Poisson process C(t), two one-dimension standard
Brownian Motion W1(t), W2(t). P is a reference measure.

2.1. Dynamics of surplus process

If both reinsurance and investment are absent, the insurer’s surplus process
{R(t)}t≥0 is assumed to follow the Crámer-Lundberg model:

dR(t) = cdt− dC(t) = cdt−
∫ ∞

0

yN(dt, dy),

where c > 0 is the premium rate, C(t) represents the cumulative claims up to

time t. We assume that C(t) :=
∑N(t)
i=1 Yi is a compound Poisson process, where

{N(t)} is a homogeneous Poisson process with intensity λ > 0, and claim sizes
Y1, Y2, . . ., independent of {N(t)}, are i.i.d positive random variables having
common distribution with a generic random variable Y . Further we suppose
that Y has finite first moment µ. We denote the moment generating function of
Y as MY (u) = EeuY . N(dt, dy) is the Poisson random measure corresponding
to the compound Poisson process C(t).

Suppose the insurer can control his insurance risk by purchasing proportional
reinsurance or acquiring new business (by acting as a reinsurer of other insurers.
See Bäuerle [5] with a retention level q(t) ∈ [0,∞) at time t.

• When q(t) ∈ [0, 1], it corresponds to a proportional reinsurance cover,
which means that at time t, if there was a claim Yi happen, the insurer
pays q(t)Yi, and the remainder is paid by the reinsurer. Let δ(q(t))
be the premium rate for the reinsurance. We assume that the reinsur-
ance premium is calculated according to the expected value principle:
δ(q(t)) = (1 + η)(1− q(t))λµ, where η > 0 is the relative safety loading
of the reinsurer.

• When q(t) ∈ [1,+∞), it corresponds to acquiring a new business, e.g.
acting as a reinsurer for other insurers, whose risks are independent
and identically distributed to the original insurance business. Hence,
the insurer’s safety loading on the new business (i.e., the proportion of
the risk exposure q(t) over 1) is assumed to be η.

For the sake of simplicity, we call {q(t)}t∈[0,T ] a reinsurance strategy hereafter.
Then the surplus process under such a reinsurance strategy can be described
as:

(2.1) dU(t) = [c− δ(q(t))]dt−
∫ ∞

0

q(t)yN(dt, dy).
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2.2. Dynamics of financial securities

We consider a financial market consisting of one risk-free asset (e.g. a bond)
and one risky asset (e.g. a stock). We further make the standard assumption
that the market is frictionless. All assets can be traded continuously over a
finite time interval [0, T ], and no traction costs or taxes are involved in trading.

The price process of the risk-free asset is given by:

(2.2) dS0(t) = rS0(t)dt,

where r > 0 is the risk-free interest rate. The price process of the risky asset
is described by:

(2.3)

{
dS(t) = S(t)[(r̄ +m(t))dt+ σdW̄1(t)],

dm(t) = am(t)dt+ bdW̄2(t),

where r̄, σ, a, b are known constants, and are all positive except a and b.
W̄1(t) and W̄2(t) are two Brownian Motions with correlation coefficient ρ, i.e.,
E[W̄1(t)W̄2(t)] = ρt.

To obtain independent Brownian Motions, we use Cholesky decomposition
here: {

W̄1(t) := W1(t),

W̄2(t) := ρW1(t) +
√

1− ρ2W2(t),
(2.4)

where W1(t) and W2(t) are two independent standard Brownian Motions. Then
the dynamics of the risky asset can be rewrite as:

(2.5)

{
dS(t) = S(t)[(r̄ +m(t))dt+ σdW1(t)],

dm(t) = am(t)dt+ bρdW1(t) + b
√

1− ρ2dW2(t).

This model has been used in Rishel [13], Bai and Guo [3] and Liang et
al. [8] for other control problems. As the growth rate of the stock is described
by an Ornstein-Uhlenbeck, which has mean-reverting property, this model can
have features of bull and bear markets. If there is a period for which m(t)
is substantially larger than 0, then this could be considered as a bull market.
Conversely, when m(t) is substantially less than 0, this could be considered as
a bear market.

2.3. The wealth process

In addition to reinsurance, we assume that the insurer is allowed to invest
all his surplus in the financial market defined above. Let α(t) denote the total
amount of wealth invested in the risky asset at time t, the remainder amount
is invested in the risk-free asset. The insurer’s trading strategy is therefore
a two-dimensional stochastic process π(t) = (q(t), α(t)), where q(t) represents
the value of risk exposure as described above. The wealth process subjected to
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this choice is denoted by Xπ(t), then its dynamics is given by:

(2.6)

dXπ(t) =
Xπ(t)− α(t)

S0(t)
dS0(t) +

α(t)

S(t)
dS(t) + (c− δ(q(t)))dt

−
∫ ∞

0

q(t)yN(dt, dy),

= {rXπ(t) + α(t)[r̄ − r +m(t)] + c− δ(q(t))}dt

+ σα(t)dW1(t)−
∫ ∞

0

q(t)yN(dt, dy).

2.4. Robust control problem for an AAI

In the following, we suppose that the insurer has a CARA utility function
U(x) = − 1

v exp{−vx}, and aims to maximize the expected utility of terminal

wealth at time T , i.e., max(q,α)∈ΠE
P [U(Xπ(T )]. The insurer is always assumed

to be an ambiguity-neutral investor (ANI). However, large number of insurers
are ambiguity-averse investors (AAI) in reality, which means that although the
AAI takes the model under measure P as his reference model, he recognizes that
it is only an approximation of the true model, and he is willing to consider other
alternative models, which can be represented by another probability measure
Q which is equivalent to the original measure P . In other words, he considers
all Q in the set of probability measures Q defined by:

(2.7) Q = {Q | Q ∼ P}.

Following Zheng et al. [21], we construct the set of alternative measures in
the following way. Suppose θ(t) := (θ1(t), θ2(t), θ3(t)) is a {Ft}t∈[0,T ]-adapted
process such that:

(i) θ1(t), θ2(t), θ3(t) are F-progressively measurable, for each fixed t ∈
[0, T ];

(ii) θ1(t), θ2(t), θ3(t) > 0 for a.e. (t, ω) ∈ [0, T ]× Ω;

(iii) E{ 1
2

∫ T
0
θ2

1(t)dt+ 1
2

∫ T
0
θ2

2(t)dt+ λ
∫ T

0
[θ3(t) ln θ3(t)− θ3(t)]dt} <∞.

We denote Θ for the space of all such processes θ. Define:

Λθ(t) = exp{−
∫ t

0

θ1(u)dW1(u)− 1

2

∫ t

0

θ2
1(u)du}

· exp{−
∫ t

0

θ2(u)dW2(u)− 1

2

∫ t

0

θ2
2(u)du}

· exp{
∫ t

0

∫ ∞
0

ln θ3(u)N(du, dy) + λ

∫ t

0

(1− θ3(u))du},

and let Q be the probability measure defined by

(2.8)
dQ

dP
|FT

= Λθ(T ).
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Then according to Girsanov’s Theorem, the processes

{WQ
1 (t)}t∈[0,T ], {WQ

2 (t)}t∈[0,T ]

defined by

(2.9) WQ
1 (t) = W1(t) +

∫ t

0

θ1(u)du,

and

(2.10) WQ
2 (t) = W2(t) +

∫ t

0

θ2(u)du,

are two independent standard Brownian Motions under the measure Q, and
N(t) is a Poisson process with new intensity λQ(t) = λθ3(t).

For tractability and ease of interpretation, the distribution of jump size Yi
are assumed to be known and are restricted to be identical under P and Q.
Then we rewrite the risky asset prices and the wealth process in terms of these
new processes, to find: the dynamics of the risky asset can be described as:

(2.11)


dS(t) = S(t){[r̄ +m(t)− σθ1(t)]dt+ σdWQ

1 (t)},

dm(t) = [am(t)− bρθ1(t)− b
√

1− ρ2θ2(t)]dt+ bρdWQ
1 (t)

+ b
√

1− ρ2dWQ
2 (t).

Then for a given admissible strategy π(t) = (q(t), α(t)), the wealth process will
satisfy the following dynamics:

dXπ(t) = {rXπ(t) + α(t)[r̄ − r +m(t)− σθ1(t)] + c− δ(q(t))}dt

− λθ3(t)q(t)µ1dt+ σα(t)dWQ
1 (t)−

∫ ∞
0

q(t)yÑQ(dt, dy),

where ÑQ(dt, dy) := N(dt, dy)− λθ3(t)dtdF (y) is a compensated Poisson ran-
dom measure. We notice that the wealth process under the alternative model
in the class Q differs only in the drift term as it should.

Assume that the insurer seeks a robust optimal control, which is the best
choice under some worst-case model. Following Anderson et al. [2] and Maen-
hout [10], we shall modify the original utility maximization problem as follows:
we first propose the following definition for the set of admissible strategies:

Definition 2.1. For any fixed t ∈ [0, T ], a strategy π(t) = (q(t), α(t)) is said
to be admissible if

(i) (q(t), α(t)) are F-progressively measurable, and q(t), α(t) ≥ 0 for a.e.
(t, ω) ∈ [0, T ]× Ω.

(ii)
∫ T

0
EQ

∗
[q2(t) + α2(t)]dt <∞.

(iii) SDE(2.6) has a unique strong solution,

where Q∗ is the chosen model to describe the worst case and will be specified
later.
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We denote the set of all admissible strategies by Π.
The value function is defined as:

(2.12) V (t, x,m) := sup
π∈Π

inf
Q∈Q

EQt,x,m[U(Xπ(T )) +

∫ T

t

ψ(u,Xπ(u), θ(u))],

where EQt,x,m[·] = EQ[· | Xt = x,mt = m],

ψ(t,Xπ(t), θ(t)) :=
θ2

1(t)

2φ1(t,Xπ(t))
+

θ2
2(t)

2φ2(t,Xπ(t))

+
λ[θ3(t) ln θ3(t)− θ3(t) + 1]

φ3(t,Xπ(t))
.

(2.13)

ψ(t,Xπ(t), θ(t)) is called the penalization term, measuring the discrepancy be-
tween the probability measure P and Q, and the penalty factors {φi}i=1,2,3

are nonnegative functions of time and wealth, whose representations will be
specified later.

In fact, this form of penalization term depends on the relative entropy of
two different probability measures P and Q, which is defined as:

(2.14) KL(Q,P ) = EQ[ln
dQ

dP
],

where dQ
dP is the Radon-Nikodym derivative corresponding to this measure

change.
Similar as Branger and Larsen [6], we can show that the increase in relative

entropy from t to t+ dt equals:

1

2
θ2

1(t)dt+
1

2
θ2

2(t)dt+ λ[θ3(t) ln θ3(t)− θ3(t) + 1]dt.(2.15)

In the penalty term (2.13), three terms in (2.15) are scaled by φ1, φ2 and φ3,
which stand for preference for ambiguity aversion with respect to diffusion risk
and jump risk respectively.

Let C1,2,2([0, T ]×R×R)={ϕ(t, x,m) | ϕ(t, ·, ·) is continuously differentiable
on [0, T ], and ϕ(·, x, ·), ϕ(·, ·,m) are twice continuously differentiable on R}.

Let Aπ,θ be the infinitesimal generator applied to the value function V and
is defined by:

Aπ,θV (t, x,m) = Vt(t, x,m) + {rx+ α[r̄ − r +m− σθ1] + c− δ(q)}Vx(t, x,m)

+
1

2
σ2α2Vxx(t, x,m)+(am− bρθ1 − b

√
1− ρ2θ2)Vm(t, x,m)(2.16)

+
1

2
b2Vmm(t, x,m) + bρσαVxm(t, x,m)

+ λθ3E[V (t, x− qY,m)− V (t, x,m)].

From standard arguments of dynamic programming approach, we see that if
V (t, x,m) ∈ C1,2,2([0, T ]×R×R), then V (t, x,m) satisfies the following HJBI
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equations:

sup
π∈Π

inf
Q∈Q
{Aπ,θV (t,Xπ(t),m) + ψ(t,Xπ(t), θ(t))} = 0,

V (T, x,m) = U(x).
(2.17)

The verification theorem is presented as follows:

Theorem 2.1 (Verification Theorem). Suppose there exist a function ϕ(t, x,m)
∈ C1,2,2([0, T ]×R×R), and a Markov control (θ∗, π∗) ∈ Θ×Π, such that:

(i) Aπ,θ∗ϕ(t,Xπ(t),m(t)) + ψ(t,Xπ(t), θ∗(t)) ≤ 0 for any π ∈ Π.
(ii) Aπ∗,θϕ(t,Xπ∗

(t),m(t)) + ψ(t,Xπ∗
(t), θ(t)) ≥ 0 for any θ ∈ Θ.

(iii) Aπ∗,θ∗ϕ(t,Xπ(t),m(t)) + ψ(t,Xπ∗
(t), θ∗(t)) = 0.

(iv) {ϕ(τ,Xπ(τ),m(τ))}τ∈F , and {ψ(τ,Xπ(τ), θ(τ))}τ∈F are uniformly in-
tegrable, where τ denotes the set of stopping times τ ≤ T .
Then, ϕ(t, x,m) = V (t, x,m), and (θ∗, π∗) is an optimal Markov con-
trol.

The proof of the verification theorem can be adapted from Theorem 3.2 in
Mataramvura and Øksendal [12], so we omit it here.

3. Solution to the model

In this section, we try to solve HJBI equation (2.17).
For analytical tractability, we follow Maenhout [10] and choose:

(3.18) φk =
−βk

vV (t, x,m)
, k = 1, 2, 3,

where βk are nonnegative parameters (βk = 0 correspond to the expected
utility maximization) reflecting the insurer’s ambiguity aversion with respect
to diffusion and jump risks.

First, we conjecture that the solution has the following form:

V (t, x,m) = −1

v
exp[−vxer(T−t) +G(t,m)],(3.19)

where G(t,m) is a function satisfying the terminal condition G(T,m) = 0.
From (3.19), we get:

(3.20)



Vt(t, x,m) = V (t, x,m)[rxver(T−t) +Gt],

Vx(t, x,m) = V (t, x,m)[−ver(T−t)],

Vxx(t, x,m) = V (t, x,m)[v2e2r(T−t)],

Vm(t, x,m) = V (t, x,m)Gm,

Vmm(t, x,m) = V (t, x,m)(G2
m +Gmm),

Vxm(t, x,m) = V (t, x,m)Gm(−ver(T−t)),

E[V (t, x− qY,m)− V (t, x,m)] = V (t, x,m)[MY (qver(T−t))− 1].
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For fixed strategy π = (q, α), substituting (3.18), (3.19) and (3.20) into
(2.17), and applying the first-order conditions with respect to θ yields:

(3.21)



θ∗1 = β1ασe
r(T−t) − β1bρ

v
Gm,

θ∗2 = −β2b
√

1− ρ2

v
Gm,

θ∗3 = exp{β3

v
[MY (qver(T−t))− 1]} := exp{β3

v
H(q, t)}.

Then putting back {θ∗i }i=1,2,3 yields:

0 = Gt + amGm +
β1b

2ρ2

2v
G2
m +

β2b
2(1− ρ2)

2v
Gm

+
b2

2
G2
m +

b2

2
Gmm −

λv

β3
− cver(T−t)(3.22)

+ inf
q
{f1(q, t)}+ inf

α
{f2(α, t)},

where

(3.23)


f1(q, t) = δ(q)ver(T−t) +

λv

β3
exp[

β3

v
H(q, t)],

f2(α, t) =
1

2
α2σ2(β1 + v)er(T−t) − α[r̄ − r +m+

σbρ(β1 + v)

v
Gm].

For the existence and uniqueness of the minimizer of f1(q, t), we have the
following lemma:

Lemma 3.1. For any t ∈ [0, T ], f1(q, t) has a unique minimizer q̄(t) ∈ (0,∞).

Proof. Putting the expressions of δ(q) and H(q, t) into (3.23), direct calculation
yields:

∂f1(q, t)

∂q
= λver(T−t){exp[

β3

v
H(q, t)] · E[Y exp(qvY er(T−t))]− µ(1 + η)},

∂2f1(q, t)

∂q2
= λ exp[

β3

v
H(q, t)]{β3

v
· [∂H(q, t)

∂q
]2

+ v2e2r(T−t) · E[Y 2 exp(qvY er(T−t))]} > 0.

(3.24)

It is easy to know that limq→∞H(q, t) = ∞ and limq→0H(q, t) = 0. So we

have limq→∞
∂f1(q,t)
∂q > 0 and limq→0

∂f1(q,t)
∂q = −λver(T−t)µη < 0.

Based on (3.24), we know that ∂f1(q,t)
∂q is strictly increasing in q, therefore

there exists a unique q̄(t) ∈ (0,∞) such that ∂f1(q,t)
∂q = 0. �

From Lemma 3.1, we obtain

q∗(t) = q̄(t).(3.25)
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Applying the first-order conditions with respect to α yields:

α∗(t) =
r̄ − r +m+ (β1+v)

v σbρGm

σ2er(T−t)(β1 + v)
.(3.26)

Plugging (q∗(t), α∗(t)) back to (3.5), we obtain:

0 = Gt + amGm +
β1b

2ρ2

2v
G2
m +

β2b
2(1− ρ2)

2v
Gm

+
b2

2
G2
m +

b2

2
Gmm −

λv

β3
− cver(T−t)

+ δ(q∗)ver(T−t) +
λv

β3
exp{β3

v
H(q∗, t)}

−
v[r̄ − r +m+ (β1+v)

v σbρGm]2

2σ2(β1 + v)
.

(3.27)

To solve above equation, we further assume thatG(t,m) = K(t)m2+J(t)m+
L(t), therefore the terminal condition G(T,m) = 0 implies K(T ) = 0, J(T ) = 0
and L(T ) = 0, and we have:

(3.28)


Gt = K ′(t)m2 + J ′(t)m+ L′(t),

Gm = 2K(t)m+ J(t),

Gmm = 2K(t).

Putting Gt, Gm, Gmm into (3.22), then after some algebra simplifications, and
grouping the coefficients according to the power of m, we obtain:

0 = [K ′(t) + 2b2(1− ρ2)K2(t) + 2(a− bρ

σ
)K(t)− v

2σ2(β1 + v)
]m2

+ [J ′(t) + (a− bρ

σ
)J(t) + 2b2(1− ρ2)K(t)J(t)

+ [
β2b

2(1− ρ2)

v
− 2bρ(r̄ − r)

σ
]K(t)− v(r̄ − r)

σ2(β1 + v)
]m(3.29)

+ L′(t) +
1

2
b2(1− ρ2)J2(t) + [

β2b
2(1− ρ2)

2v
− bρ(r̄ − r)

σ
]J(t)

+ b2K(t) +M(t),

where

(3.30) M(t) = −λv
β3
− cver(T−t) − v(r̄ − r)2

2σ2(β1 + v)
+ f1(q∗(t), t).

Because this equation must hold for all m, the coefficient of m2 and m must
be zero. Otherwise, changing the value of m would change the value of the
right hand side of equation (3.29), and hence it could not always be equal to
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zero. This gives us the following three ordinary differential equations:

(3.31)



K ′(t) + 2b2(1− ρ2)K2(t) + 2(a− bρ

σ
)K(t)− v

2σ2(β1 + v)
= 0,

J ′(t) + (a− bρ

σ
)J(t) + 2b2(1− ρ2)K(t)J(t)

+ [
β2b

2(1− ρ2)

v
− 2bρ(r̄ − r)

σ
]K(t)− v(r̄ − r)

σ2(β1 + v)
= 0,

L′(t) +
1

2
b2(1− ρ2)J2(t) + [

β2b
2(1− ρ2)

2v
− bρ(r̄ − r)

σ
]J(t)

+ b2K(t) +M(t) = 0,

with terminal conditions K(T ) = 0, J(T ) = 0 and L(T ) = 0.
For K(t), the related equation is a kind of Riccati equation, having the

following standard form:

(3.32) K ′(t) +AK2(t) +BK(t) + C = 0.

with:

(3.33) A = 2b2(1− ρ2), B = 2(a− bρ

σ
), C = − v

2σ2(β1 + v)
.

As obviously B2− 4AC > 0, the solution of the Ricatti equation (3.15) fits the
form:
(3.34)

K(t) =

√
B2 − 4AC

2A
tanh[

1

2

√
B2 − 4AC(t−T )+arctanh(

B√
B2 − 4AC

)]− B

2A
.

Then for J(t) and L(t), the corresponding equations are first order linear ordi-
nary differential equations, so we can easily deduce their solutions:

J(t) = e
∫ T
t
p(s)ds[−

∫ T

t

h(s)e−
∫ T
s
p(u)duds],(3.35)

where

p(t) = a− bρ

σ
+ 2b2(1− ρ2)K(t),

h(t) = [
β2b

2(1− ρ2)

v
− 2bρ(r̄ − r)

σ
]K(t)− v(r̄ − r)

σ2(β1 + v)
,

(3.36)

and
(3.37)

L(t) =

∫ T

t

{1

2
b2(1−ρ2)J2(s)+[

β2b
2(1−ρ2)

2v
−bρ(r̄−r)

σ
]J(s)+b2K(s)+M(s)}ds,

where M(t) is defined in (3.30).
Now we summarize the above analysis in the following theorem:
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Theorem 3.1. For the robust control problem (2.12), the optimal proportional
reinsurance and investment strategies are given by:

(3.38)


q∗(t) = q̄(t),

α∗(t) =
r̄ − r +m+ (β1+v)

v σbρ[2K(t)m+ J(t)]

σ2er(T−t)(β1 + v)

and the corresponding value function is given by:

V (t, x,m) = −1

v
exp[−vxer(T−t) +K(t)m2 + J(t)m+ L(t)].(3.39)

The worst case measure is given by:

(3.40)



θ∗1 = β1ασe
r(T−t) − β1bρ

v
[2K(t)m+ J(t)],

θ∗2 = −β2b
√

1− ρ2

v
[2K(t)m+ J(t)],

θ∗3 = exp{β3

v
[MY (q∗ver(T−t))− 1]},

where K(t), J(t) and L(t) are given by equations (3.34), (3.35) and (3.37),
respectively.

Remark 3.2. For an ambiguity-neutral insurer (ANI) in the same financial
market, who considers a similar optimization problem, we denote the set of all

admissible strategies as Π̃ = {π̃(t) | π̃(t) = (q̃(t), α̃(t)), t ∈ [0, T ]}. His wealth
process under the reference measure P will be described as:

dX π̃(t) = {rX π̃(t) + α(t)[r̄ − r +m(t)] + c− δ(q(t))}dt

+ σα(t)dW1(t)−
∫ ∞

0

q(t)yN(dt, dy),

and the objective function is:

Ṽ (t, x,m) := sup
π̃∈Π̃

Et,x,m[U(X π̃(T ))]

= sup
π̃∈Π̃

Et,x,m{−
1

v
exp[−vX π̃(T )] | Xt = x,mt = m}.

Using the same technique, we obtain the value function:

Ṽ (t, x,m) = −1

v
exp[−vxer(T−t) + K̃(t)m2 + J̃(t)m+ L̃(t)],(3.41)
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where K̃(t), J̃(t) and L̃(t) are given by three ordinary differential equations:
K̃ ′(t) + 2b2(1− ρ2)K̃2(t) + 2(a− bρ

σ
)K̃(t)− 1

2σ2
= 0,

J̃ ′(t) + (a− bρ
σ

)J̃(t) + 2b2(1−ρ2)K̃(t)J̃(t)− 2bρ(r̄ − r)
σ

K̃(t)− r̄ − r
σ2

= 0,

L̃′(t) +
1

2
b2(1− ρ2)J̃2(t)− bρ(r̄ − r)

σ
J̃(t) + b2K̃(t) + M̃(t) = 0,

with terminal conditions K̃(T ) = 0, J̃(T ) = 0 and L̃(T ) = 0.
and M̃(t) = −cver(T−t) − λ− (r̄ − r)2

2σ2
+ f̃1(q̃∗(t), t),

f̃1(q̃(t), t) = δ(q̃)ver(T−t) + λMY (q̃ver(T−t)),

where q̃∗(t) is the unique minimizer of f̃1(q̃(t), t) over (0,+∞).

4. Numerical implications

In this section, we provide several numerical examples to illustrate the effects
of model parameters on our robust optimal reinsurance and investment strate-
gies. In the following analysis, unless otherwise stated, the basic parameters
are given in Table 1. Further we assume that the claim Yi follows exponential
distribution with parameter m1 = 0.05.

Table 1. Values of model parameters in the numerical examples

Parameters r r̄ a b σ ρ η T t v β1 β2 β3

Value 0.03 0.08 -0.7 0.5 0.3 0.5 1.2 2 0 0.5 0.8 0.8 0.8

4.1. Sensitivity analysis of the robust optimal investment strategy
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Figure 1. The effect
of v on α∗(t).
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Figure 2. The effect
of β1 on α∗(t).
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Fig. 1 reflects that the more risk averse the AAI is, the less amount of his
wealth will be invested in the stock. As is shown in Fig. 2, α∗(t) decreases with
respect to β1. Because the higher β1 is, the less confidence the AAI has in the
reference model, so he will reduce the investment on the stock.

4.2. Sensitivity analysis of the robust optimal reinsurance strategy
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Figure 3. The effect
of v on q∗(t).
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Figure 4. The effect
of β3 on q∗(t).
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of η on q∗(t).
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Figure 6. The effect
of β1 on Lβ1,β2,β3

.

In this subsection, in order to show the relationships more clearly, we prolong
the time horizon T to 10. Fig. 3 shows the effect of the risk aversion coefficient
v on the robust optimal reinsurance strategy q∗(t). Clearly q∗(t) is a decreasing
function of v, which means that the more risk averse the AAI is, the lower risk
retention level he will choose, which means that the less risk he would like to
undertake by himself. This is also in accordance with people’s intuition. From
Fig. 4, we find that the AAI with higher ambiguity aversion level β3 is prone
to purchasing more reinsurance. As β3 reflects the AAI’s attitude towards the
jump risk, the higher β3 is, he would like to cede more risks to the reinsurer.
Fig. 5 indicates how the reinsurance safety loading parameter η influent the
AAI’s decision. As the larger η is, the more reinsurance premium he would pay
to the reinsurer, then he prefers to raise the retention level.
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4.3. Utility loss analysis

Compared with the AAI with ambiguity-aversion coefficients β1, β2 and β3,
the utility loss function from ignoring the model uncertainty can be defined as:

(4.42) Lβ1,β2,β3 = 1− Ṽ (t, x,m)

V (t, x,m)
,

where Ṽ is given by (3.41) and V is given by Theorem 3.1.
We show the effects of three ambiguity aversion coefficients β1, β2, β3 on the

loss utility function Lβ1,β2,β3
in Figs. 6-8. As is shown in Fig. 7, the effect

of β2 on Lβ1,β2,β3
is not so obvious as β1 and β3, implying that Lβ1,β2,β3

is
more sensitive to the diffusion risk of the risky asset’s price and the jump risk
of the surplus process. On the other hand, Lβ1,β2,β3 increases when β1, β2, β3

increases respectively, which means that the more ambiguity aversion the AAI
is, the more conservative strategies he will choose, and then the more utility
loss the AAI will suffer. From Figs. 6-8, we can also see that the utility loss
is a increasing function of the remaining time span T − t, indicating that in
the beginning, the differences between the AAI and the ANI is large. As time
elapse, the differences diminish gradually.
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Figure 7. The effect
of β2 on Lβ1,β2,β3 .
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Figure 8. The effect
of β3 on Lβ1,β2,β3 .

5. Conclusion

In this paper, we consider a robust optimal reinsurance and investment prob-
lem for an AAI, who worries about model uncertainty, and aims to find robust
optimal strategies. His surplus is described by the classical Crámer-Lundberg
model, and the dynamics of the risky-asset he invests in is assumed to follow an
Ornstein-Uhlenbeck process, which effectively describes the features of bull and
bear markets. He aims to maximize the CARA utility of the terminal wealth.
By applying stochastic dynamic programming theory, explicit expressions for
the robust optimal strategies and value functions are derived. Some numerical
examples are given to illustrate the effects of model parameters on the robust
optimal strategies.
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