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RELIABILITY ANALYSIS OF CHECKPOINTING MODEL
WITH MULTIPLE VERIFICATION MECHANISM

YUTAE LEE

ABSTRACT. We consider a checkpointing model for silent errors, where a
checkpoint is taken every fixed number of verifications. Assuming gener-
ally distributed i.i.d. inter-occurrence times of errors, we derive the reli-
ability of the model as a function of the number of verifications between
two checkpoints and the duration of work interval between two verifica-
tions.

1. Introduction

Reactive failure management techniques to mitigate the impact of errors
are required to ensure a correct and uninterrupted execution of an application
in high performance computing [17]. The classical fail-stop errors are defined
as fatal interruptions, such as hardware failures or crashes, that call the faulty
node for a reboot or replacement [7]. In addition to fail-stop errors, silent errors,
also called silent data corruptions or latent errors, constitute another threat
that can no longer be ignored and should also be accounted for [1,18,19,23-25].
Contrarily to a fail-stop error whose detection is immediate, a silent error is not
detected immediately because the error is identified only when the corrupted
data is activated or leads to an unusual application behavior [1,4].

Checkpoint with rollback and recovery is the standard recovery technique
for coping with fail-stop errors [12,14]. An application employing checkpoints
periodically saves its state, so that when an error occurs while some task is
executing, the application is rolled back to its last checkpointed task and re-
sumes execution from that task onward [1,4]. Given the value of Mean Time
Between Failures (MTBF), an approximation of the optimal checkpoint interval
has been computed as a function of the key parameters: downtime, checkpoint-
ing time, and recovery time. The first estimate was made by Young [22], and
later by Daly [13]. Both used a first-order approximation for exponential fail-
ure distributions. Formulas for Weibull failure distribution, one of the most
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widely used lifetime distributions, were provided in [10,15,20]. However, the
optimal checkpoint interval is known only for exponential failure distributions
[9]. Dynamic programming heuristics for arbitrary distributions were proposed
in [9,11,21].

While checkpoint with rollback and recovery is the standard approach to
address fail-stop errors, there is no widely used technique to cope with silent
errors [4,5]. A major challenge with silent errors is the latency of error de-
tection. If an error stroke before the last checkpoint, which saved an already
corrupted state, and is detected after that checkpoint, then the checkpoint is
corrupted and may not be used to recover from the error [4]. To alleviate this
issue, Lu et al. [16] introduced a multiple checkpointing model with error detec-
tion latency. The error is detected after a random time and one has to rollback
up to the last valid checkpoint that precedes the occurrence of the error. A
problem concerning this concept is that it is not clear how one can determine
when the error has indeed occurred and hence how one can identify the last
valid checkpoint. To address the problem with silent errors, researchers have
recently proposed many verification mechanisms. If a verification is successful,
then the output of the task is correct, and one can safely either proceed to the
next task directly or save the result beforehand by taking a checkpoint. Other-
wise, if a verification fails, we have to rollback to the last saved checkpoint and
re-execute the work since that point on [4]. Aupy et al. [1] proposed a model
with periodic patterns coupling k verifications and 1 checkpoint, where silent
errors are detected only through some verification mechanism. They computed
the values k£ and 7 to minimize the waste, i.e., maximize the reliability, where
7 is the work interval between two verifications. Benoit et al. [8] extend the
analysis of [1] by including k verifications and ! checkpoints. In [1, 8], they
neglected the possibility of having more than one error within a periodic pat-
tern and assumed that an error, if any, is located uniformly within the first k
verifications in a periodic pattern. Due to the assumption, the optimal values
derived in [1] only depend on the mean value of the inter-occurrence times of
errors, not the shape of their distribution.

Bautista-Gomez et al. [2] first investigated the use of different types of par-
tial detectors while taking both recall and precision into consideration. The
objective was to find the optimal pattern that minimizes the expected execution
time of an application. They first showed that detectors with imperfect preci-
sion offer limited usefulness. Then, focusing on detectors with perfect precision
but imperfect recall, they conducted a comprehensive complexity analysis of
the optimization problem and proposed a greedy algorithm to solve the prob-
lem. In [2], the inter-occurrence times of silent errors were assumed to follow
an exponential distribution.

Although numerous studies have dealt with either fail-stop or silent errors,
very few studies have dealt with both simultaneously [3-7]. Benoit et al. [5]
introduced a general-purpose model to deal with both fail-stop and silent er-
rors, combining checkpoints with a verification mechanism. They considered



CHECKPOINTING MODEL WITH MULTIPLE VERIFICATION MECHANISM 1437

three execution scenarios: (i) a single speed is used during the whole execution;
(ii) a second, possibly higher speed is used for any potential re-execution; (iii)
different pairs of speeds can be used throughout the execution. For the three
execution scenarios and for both makespan and energy objectives, they pro-
vided a dynamic programming algorithm that determines the best locations
of checkpoints and verifications. In [6], they presented a unified framework
and optimal algorithmic solutions to the double problem of fail-stop and silent
errors. Silent errors are handled via verification mechanisms and in-memory
checkpoints. Fail-stop errors are processed via disk checkpoints. All verifica-
tion and checkpoint types are combined into computational patterns. They
designed a detailed model based upon the computational patterns and deter-
mined the optimal pattern. In [7], they combined multi-level checkpointing
with guaranteed and partial verifications to deal with both fail-stop and silent
errors in linear workflows. Benoit et al. [3] and Benoit et al. [4] combined check-
pointing and replication for the reliable execution on platforms subject to both
fail-stop and silent errors. All of these results assume that the inter-occurrence
times of errors are exponentially distributed.

In this paper, we focus on silent errors whose inter-occurrence times are gen-
erally distributed i.i.d. random variables. We consider a checkpointing model
with multiple verification mechanism, where a checkpoint is taken every k ver-
ifications. Moreover, we remove the conventional assumption that at most one
error may occur between two checkpoints. Given the cost of checkpointing,
downtime, recovery, and verification, we drive the reliability as a function of
the number of verifications between two checkpoints and the duration of the
work interval between two verifications.

2. Model

We consider a checkpointing model where silent errors are detected only
through some verification mechanism [1]. Consider a scenario where k consec-
utive successful verifications and 1 checkpoint are included in a periodic pattern
T that repeats over time (Figure 1).

error
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FIGURE 1. Model with k =3

Each verification is performed after executing a work of duration 7. Let V'
be the time it takes to perform a verification. If k£ consecutive verifications
reveal no errors, then a checkpoint directly follows the last verification, so as
to save correct results. If a verification detects an error, then we roll back to
the last checkpoint at the end of the previous pattern and re-execute the work.
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Let C' be the checkpointing time it takes to create a checkpoint. A series of
unexpected errors can be occurred and the inter-occurrence time X of errors is
generally distributed with probability distribution function Fx(z). When an
error is detected, the downtime and the recovery time, denoted by D and R,
respectively, is required. The downtime D represents the unavoidable time to
rejuvenate a process after an error, which is required for stopping the failed
process and restoring a new one that will load the checkpoint image [1]. The
recovery time R represents the time to reload the information stored at the
checkpoint back into primary memory [1]. The values 7, C, D, and R are
assumed to be constant. If there are no errors during recovery time, then at
the end of the recovery time the system operates normally and restarts from
the last checkpoint. It is assumed that errors can not occur during checkpoint
and downtime.

We assume that the inter-occurrence times of errors are generally distributed
i.i.d.random variables with well-known distribution function, not limited to ex-
ponential distribution. Thus, if the inter-occurrence times of errors in a plat-
form with several processors are generally distributed i.i.d. random variables
and all the processors are rejuvenated anew after each error, we can apply the
derivation in this paper to the platform with several processors. However, even
if the error occurrence distribution of one processor is known, it is difficult to
compute, or even approximate, the error distribution of the platform with n
processors, because it is the superposition of n random variables. Furthermore,
the assumption that all the processors are rejuvenated anew after each error is
unreasonable for a large parallel platform [9]. Thus, on the practical side, the
derivation in the next section applies only with a single processor.

3. Stochastic analysis

Let S(t) be the number of checkpoints created after the last error occur-
rence at time ¢t. Note that each periodic pattern begins immediately after a
checkpoint is created. Let the time sequence {t,,n =1,2,...} be the epochs
at which checkpoints are created. Then, the time sequence {t,,n =1,2,...}
is the Markov points embedded in the process {S(¢),t > 0}. The embedded
Markov chain {S,,n =1,2,...} is defined by

We also define a semi-Markov process S(t) by
(2) S(t) = Ssup{n;tngt}y t>0.

Notation “sup” (superior limit) means the limit from above. The value S(t)
remains constant from one Markov point to the next.

Let T;, i = 1,2, ..., be the residence time that the semi-Markov process is
in state ¢, i.e., T; be the length of a periodic pattern beginning with S,, = i,
which does not depend on n. To obtain the reliability, we need to calculate the
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expected value of T;:
(3) E(T;)=E({tnt1 —tn|Sn=1), 1=1,2,....

Once the expected value E (T3) is obtained, the mean value of the length T of
an arbitrary periodic pattern is given by

(4) E(T) = lim B(thi1 —t.) = Y mE(T)),
i=1

n—oo

where {m;,4 = 1,2,...} is the limiting distribution of {S,,n = 1,2, ...}, defined
by

(5) mi= lim P(S,=14), i=12,....

First, we will obtain the limiting distribution {m;,7 = 1,2, ...}, which is given
as the unique solution to the following equations:

(6) Wj:Zﬂ'ipija j:1,27...,
i=1
(7) Z’]Ti = ].,
i=1
where
(8) Pij =P (Sny1 =7 |Sn =1)

is the state-transition probability, which is independent of n. The state transi-
tion from S,, =i to S;,+1 = 1 occurs when there is at least one error during the
n-th periodic pattern with S,, = ¢ and the transition from S,, = i to S, 41 = i+1
occurs when there are no errors during the n-th periodic pattern with S,, = i.
Thus, we have

1—q;jk, i=1,2,..., j=1,
9) Pij =19 G i=1,2,..., j=i+]1,
0, i=1,2,..., j#L, jFi+1,

where

(10) q;jjz (X —[R+ik(r+ V)] >j(r+V)|X > R+ik(t+V))

fori =1,2,... and j = 1,2,.... Using the state-transition probabilities, we
have
(11) M= TGy =23,
and thus
i—1
(12) m=m [ ) =g e 1= 1,2

Jj=1
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The unknown probability 7 is determined from the normalization condition

Yy =1
1
(13) =
1+Zj:1‘1fr,jk

Note that

> R+ k(r+V))
14 1 + —E il X k
10 ey PG o aeseen)

where [a] is the least integer greater than or equal to a.
Now, we obtain the expected value E (T;) of the length T;, which is given by

k
(15)  B(L)=k(@+V)+C+ > q;li(r+V)+D+R)

j=1

1—1r] T .
+(1—q:k) r*k I [j(r+V)+D+R],

) =P(X <R+ (r+V)),
17) r;=PR+G-DT+V)<X<R+j(r+V)), j=2,3,...,k,
) i =P(X >R+k(r+V)),

(19) ¢;=P(j-1D)(r+V)<X—-[R+ik(r+ V)] <j(r+V)
| X > R+ tk(t+V))

fori,5 =1,2,.... Note that in (15) the part k (7 + V') + C corresponds to the
length of a periodic pattern with no errors; the part

qu (r+V)+D+R]

corresponds to the length added due to the first error during a periodic pattern;
the part 1 — q:k of the last term corresponds to the probability that the first
error occurs; the part (1 - r,j) / r,j of the last term corresponds to the mean
number of errors, excluding the first one, during a periodic pattern in the
condition that the first error occurs; and the last part

e

j(r+V)+ D+ R]
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of the last term corresponds to the length added due to each error (not the
first one) during the periodic pattern. We rewrite (15) to

l—qj'
(20) B(T;) =k(r+V)+C+ —2" (D +R)
k
k "
+(T+V)Zj {Qi,j‘i‘(l_qz_k) i}
i=1 "k

Substituting (12), (13), and (20) into (4), we obtain the mean value E (7).
Then, the reliability Rel (7, k) is given by

kT

(21) Rel (1,k) = )

3.1. Closed form expression for exponential error occurrence case

The purpose of this subsection is just to give a closed form expression of the
reliability (21) in the special case of an exponential error occurrence. The inter-
occurrence time X of errors is assumed to be exponentially distributed with
rate X in this subsection. Because of the memoryless property of exponential
distribution, the probability distribution of T is the same as that of T; for any
i. Hence,

1 — e—Ak(T+V) e~ MR+THV)

(22) E(M)=(+V) o~ M RAK(T+V)) [1 + 1— ex\(T+V):| +C
1 — e A(T+V)
ey P+ R)

and therefore the reliability Rel(r, k) is given by

Rel (r,k) = kT

1_e—MkT [ —A(R+T7)

(T +V) e X(BTRT) 1+ el_e,h. } +C

+ (1= ™) [ =t D + B

kT (1 — e—A(T+V)) e~ MR+E(T+V))

(T4 V) (1 — e AT+ {1 = e AHY) 4 o= A(RAT+V) )

+C (1 _ efA(TJrV)) ef)\(R+k:(‘r+V))

+(D + R) (1 _ ef)\(TJrV)) (1 _ 67)\19(7+V))

Actually, as for the exponential error occurrence case, researchers have con-
sidered more realistic settings of evaluation scenarios than this subsection.
Dealing with several errors, different chunk lengths, and more complicated
patterns has been the scope of the papers [2,5, 6], as mentioned in Section 1.
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4. Numerical examples

TABLE 1. Parameter values

’ Parameters \ Scenario 1 \ Scenario 2 ‘
1% 20 seconds 2 seconds
C 600 seconds 60 seconds
D 0 seconds 0 seconds
R 600 seconds 60 seconds
E(X) 0.0001 years | 0.0001 years

Let us provide some numerical examples. In our model, a checkpoint is
taken every k verifications of the current state of the application. We find the
optimal pair (k, 7) to maximize the reliability, where the value k is the number
of verifications between two checkpoints and the value 7 is the duration of
the work interval between two verifications. We consider two scenarios. The
parameter values for each scenario are summarized in Table 1, in which the
second scenario is more optimistic [1]: the values V, C, and R in Scenario

0.5 0.5 T T T r
0.45 045 1
0.4 0.4
0.35 0.35
Z 03 2 03
o) o
8 ©
© 0.25 © 0.25
J —©6— 7 =1 minute ) ——©— 7 =1 minute
0.2 —>%— 7 = 2 minutes 0.2 —>%— 7 =2 minutes \
—+— 7 = 3 minutes —+— 7 =3 minutes | ¥
0.15% —¥— 7 = 4 minutes | T 0.15 —¥— 7 = 4 minutes | T
—+8— 7 =5 minutes —+8— 7 = 5 minutes
0.1 —— 7 =6 minutes | 0.1 —— 7 =6 minutes |
—</— 7 =7 minutes —/— 7 =7 minutes
0.05 : : : 0.05 : : :

FIGURE 2. Reliability for Scenario 1:
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10

(left) Exponential;
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FIGURE 3. Reliability for Scenario 2: (left) Exponential;
(right) Weibull

2 are divided by 10 compared to Scenario 1. In both scenarios, the mean
inter-occurrence time E(X) of errors is set to 0.0001 years, equivalent to 52.56
minutes. The downtime is set to 0 seconds because the process rejuvenation
time is small compared to the other parameters [1]. In each scenario, two
different distributions with same mean are considered for the inter-occurrence
times of errors: exponential distribution and Weibull distribution with shape
parameter 2.

Figure 2 and Figure 3 illustrate the reliability by varying the number of
verifications for different values of 7 in Scenario 1 and Scenario 2, respectively.
Both figures show that the reliability increases, reaches a maximum value, and
then decreases as the number of verifications increases. Note that intermedi-
ate verifications can detect an error before a checkpoint is created at the end
of a periodic pattern, which can reduce the amount of time lost due to the
error. On the contrary, introducing too many verifications induces too much
overhead, which eventually decreases the reliability. Intuitively, as the value of
7 is higher, the optimal value of k to maximize the reliability is usually lower.
Since Scenario 2 is more optimistic than Scenario 1, the reliability of Scenario
2 is higher than that of Scenario 1. Moreover, we find that, not only the mean
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of the inter-occurrence time X of errors, but the shape of the distribution also
affects to the reliability. In Scenario 1, the optimal reliability is achieved at
k = 4 and 7 = 6 minutes in case of exponential distribution for X (the left
in Figure 2) and it is achieved at k = 3 and 7 = 6 minutes in case of Weibull
distribution for X (the right in Figure 2), although the mean value E (X) is the
same in both cases. In Scenario 2, the optimal reliability is achieved at k = 5
and 7 = 2 minutes in case of exponential distribution (the left in Figure 3) and
it is achieved at k = 4 and 7 = 2 minutes in case of Weibull distribution (the
right in Figure 3).

5. Conclusion

We consider a checkpointing model for silent errors, in which a checkpoint
is taken every k verifications. Assuming generally distributed inter-occurrence
times of errors, we analytically derive its reliability as a function of k£ and
7, where the value k is the number of verifications between two checkpoints
and the value 7 is the duration of work interval between two verifications. In
numerical examples with realistic parameters, we find the optimal values of k
and 7 to maximize the reliability. Moreover, it is shown that not only the mean
of inter-occurrence times of errors, but the shape of the distribution also affects
to the reliability.
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