DOI QR코드

DOI QR Code

기상 포름알데히드 반응을 위한 활성탄에 담지한 P-V-Mo 촉매의 조성에 따른 영향

Effects of Composition in P-V-Mo Catalysts Supported on Activated Carbon for Vapor Formaldehyde Reaction

  • 이소은 (한국에너지기술연구원 기후변화연구본부) ;
  • 김성수 (한국에너지기술연구원 기후변화연구본부) ;
  • 정도영 (한국원자력연구원 양자광학연구부) ;
  • 강용 (충남대학교 응용화학공학과) ;
  • 이승재 (한국에너지기술연구원 기후변화연구본부)
  • Lee, So-eun (Climate Change Research Division, Korea Institute of Energy Research (KIER)) ;
  • Kim, Seong-Soo (Climate Change Research Division, Korea Institute of Energy Research (KIER)) ;
  • Jeong, Do-Young (Quantum Optics Division, Korea Atomic Energy Research Institute (KAERI)) ;
  • Kang, Yong (Chemical Engineering and Applied Chemistry, Chungnam National University) ;
  • Lee, Seung-Jae (Climate Change Research Division, Korea Institute of Energy Research (KIER))
  • 투고 : 2019.08.01
  • 심사 : 2019.08.21
  • 발행 : 2019.12.01

초록

본 연구에서는 Phosphoric acid ($H_3PO_4$)와 Vanadium (V) pentoxide ($V_2O_5$), Molybdenum (VI) trioxide ($MoO_3$)으로 부터 조성을 달리하여, heteropoly acid의 PVMo 촉매를 활성탄 지지체에 담지하였다. 촉매의 반응성 조사를 위해, 기상의 포름알데히드를 $140^{\circ}C$의 온도에서 1시간 동안 반응시켰다. 반응전후의 촉매는 XRD와 BET 분석을 수행하였으며, 촉매의 산도 측정을 위해 $NH_3-TPD$을 수행하였다. 포름알데히드의 전환율은 $MoO_3$$H_3PO_4$ 성분이 감소하고 $V_2O_5$ 성분이 증가함에 따라 증가하였다. 대부분의 촉매에서 비교적 낮은 촉매 결정성이 관찰되었으며, 비표면적은 반응후 다소 감소하는 것으로 나타났다. $NH_3-TPD$ 분석 결과, $400^{\circ}C{\sim}500^{\circ}C$에 해당하는 강한 산점의 비율이 $MoO_3$$H_3PO_4$ 성분의 함량이 감소하고 $V_2O_5$ 성분의 함량이 증가함에 따라 증가하였다. 이러한 강한 산점의 비율이 포름알데히드의 전환율에 영향을 미치는 것으로 나타났다.

In this study, heteropoly acid PVMo catalysts were supported on activated carbon with various composition of phosphoric acid ($H_3PO_4$), vanadium (V) pentoxide ($V_2O_5$) and molybdenum (VI) trioxide ($MoO_3$). Catalytic performance was examined at $140^{\circ}C$ for 1hour in vapor formaldehyde. XRD and BET analyses were carried with the catalysts before and after the reaction. Formaldehyde conversion was increased with decreasing Mo and $H_3PO_4$ content and increasing $V_2O_5$ content. Acidity of the catalysts was investigated with $NH_3-TPD$. Crystallinity of the catalysts was relatively low, and surface area was decreased after the reaction. In $NH_3-TPD$ result, the ratio of strong acid site corresponding to $NH_3$ desorption between $400^{\circ}C$ and $500^{\circ}C$ was increased by decreasing $MoO_3$ and $H_3PO_4$ content and increasing $V_2O_5$ content. Therefore, it was found that the strong acid site could affect the catalytic reactivity in vapor formaldehyde conversion.

키워드

참고문헌

  1. Emig, G., Kern, F., Ruf, St. and Warnecke, H.-J., "Vapour-phase Trimerisation of Formaldehyde to Trioxane Catalyzed by 1-vanado-11-molybdophosphoric acid: A Reaction Rate with An Unusual Pressure Dependency," Appl. Catal. A: Gen., 118, L17-L20(1994). https://doi.org/10.1016/0926-860X(94)80085-5
  2. Kern, F., Ruf, St. and Emig, G., "Vapour-phase Trimerization of Formaldehyde to Trioxane Catalysed by 1-vanado-11-molybdo-Phosphoric Acid," Appl. Catal. A: Gen., 150, 143-151(1997). https://doi.org/10.1016/S0926-860X(96)00286-4
  3. Nakao, H., Yutaka, K. and Arata, C., "Solid Phosphoric Acid Catalyst and Method for Producing Trioxane," J. P. Patent No. 6, 332, 913 B2(2018).
  4. Boudjema, S., Vispe, E., Choukchou-Braham, A., Mayoral, J. A., Bachira, R. and Fraileb, J. M., "Preparation and Characterization of Activated Montmorillonite Clay Supported 11-molybdo-vanado-phosphoric Acid for Cyclohexene Oxidation," RSC Adv., 5, 6853-6863(2015). https://doi.org/10.1039/C4RA13604G
  5. Sopa, M., Waclaw-Held, A., Grossy, M., Pijanka, J. and Nowinska, K., "Ethane to Acetic Acid Oxidation over Supported Heteropoly Acids," Appl. Catal. A: Gen., 285, 119-125(2005). https://doi.org/10.1016/j.apcata.2005.02.013
  6. Sawant, D. P., Vinu, A., Justus, J., Srinivasu, P. and Halligudi, S. B., "Catalytic Performances of Silicotungstic Acid/zirconia Supported SBA-15 in An Esterification of Benzyl Alcohol with Acetic Acid," J. Mol. Catal. A-Chem., 276, 150-157(2007). https://doi.org/10.1016/j.molcata.2007.07.001
  7. Chimienti, M. E., Pizzio, L. R., Caceres, C. V. and Blanco, M. N., "Tungstophosphoric and Tungstosilicic Acids on Carbon as Acidic Catalysts," Appl. Catal. A: Gen., 208, 7-19(2001). https://doi.org/10.1016/S0926-860X(00)00702-X
  8. Sharma, P. and Patel, A., "Zirconia Supported 12-molybdophosphoric Acid: Physico-chemical Characterization and Non-solvent Liquid Phase Oxidation of Styrene," Appl. Surf. Sci., 255, 7635-7641(2009). https://doi.org/10.1016/j.apsusc.2009.04.041
  9. Ressler, T., Dorn, U., Walter, A., Schwarz, S. and Hahn, A. H. P., "Structure and Properties of $PVMo_{11}O_{40}$ Heteropolyoxomolybdate Supported on Silica SBA-15 as Selective Oxidation Catalyst," J. Catal., 275, 1-10(2010). https://doi.org/10.1016/j.jcat.2010.07.001
  10. Rafiee, E., Shahbazi, F., Joshaghani, M. and Tork, F., "The Silica Supported $H_3PW_{12}O_{40}$ (a heteropoly acid) as An Efficient and Reusable Catalyst for a One-pot Synthesis of ${\beta}$-acetamido Ketones by Dakin-West Reaction," J. Mol. Catal. A-Chem., 242, 129-134 (2005). https://doi.org/10.1016/j.molcata.2005.08.005
  11. Kokorin, A. I., Kulak, A. I., Tomskii, I. S. and Rufov, Yu., "Spectroscopy of Mixed Molybdenum-vanadium Oxides and Catalytic Oxidation of Toluene," Russ. J. Phys. Chem., 7, 255-261(2013). https://doi.org/10.1134/S1990793113030044
  12. Kalantar-Zadeh, K., Wlodarski, W., Tang, J., Wang, M., Wang, K. L., Shailos, A., Galatsis, K., Kaner, R. B., Kojima, R., Strong, V. and Lech, A., "Synthesis of Nanometre-thick $MoO_3$ Sheets," RSC., 2, 429-433(2010).
  13. Salavati, H. and Rasouli, N., "Synthesis and Characterization of Supported Heteropolymolybdate Nanoparticles Between Silicate Layers of Bentonite with Enhanced Catalytic Activity for Epoxidation of Alkenes," Mater. Res. Bull., 46, 1853-1859(2011). https://doi.org/10.1016/j.materresbull.2011.07.037
  14. Wu, X. L., Xiao, M., Meng, Y. Z. and Lu, Y. X., "Direct Synthesis of Dimethyl Carbonate on $H_3PO_4$ Modified $V_2O_5$," J. Mol. Catal. A-Chem., 238, 158-162(2005). https://doi.org/10.1016/j.molcata.2005.05.018
  15. Bezerra, F. A., Altino, H. O. N. and Soares, R. R., "Oxidative Dehydration of Glycerol over Molybdenum- and Vanadium-Based Catalysts," J. Braz. Chem. Soc., 30, 1025-1033(2019).
  16. Suppiah, D., Komar, A. and Hamid, S., "Structural Dynamics of Molybdenum Vanadium Oxide (MoVOx)," J. Therm. Anal. Calorim., 129, 1367-1376(2017). https://doi.org/10.1007/s10973-017-6333-1
  17. Chary, K. V. R., Bhaskar, T., Kishan, G. and Reddy, K. R., "Characterization and Reactivity of Molybdenum Oxide Catalysts Supported on Niobia," J. Phys. Chem. B., 105, 4392-4399(2001). https://doi.org/10.1021/jp003201y
  18. Zhao, H., Zuo, C., Yang, D., Li, C. and Zhang, S., "Effects of Support for Vanadium Phosphorus Oxide Catalysts on Vapor-phase Aldol Condensation of Methyl Acetate with Formaldehyde," Ind. Eng. Chem. Res., 55, 12693-12702(2016). https://doi.org/10.1021/acs.iecr.6b03079
  19. Yin, X., Han, H., Gunji, I., Endou, A., Ammal, S. S. C., Kubo, M. and Miyamoto, A., "$NH_3$ Adsorption on the Bronsted and Lewis Acid Sites of $V_2O_5(010)$: A Periodic Density Functional Study," J. Phys. Chem. B., 103, 4701-4706(1999). https://doi.org/10.1021/jp990363p
  20. Kim, S. Y., Jermy, B. R., Bineesh, K. V., Lim, D. O., Kim, K. H. and Park, D. W., "Catalytic Performance of V-KIT-6 for the Oxidation of Styrene," Korean Chem. Eng. Res., 47, 275-280(2009).
  21. Mitran, G., Neatu, F., Pavel, O. D., Trandafir, M. M. and Florea, M., "Behavior of Molybdenum-Vanadium Mixed Oxides in Selective Oxidation and Disproportionation of Toluene," Materials,, 12, 748(2019). https://doi.org/10.3390/ma12050748
  22. Yu, X., Bao, Q., Wang, Z., Zhang, Y., Liu, B., Ma, H. and Wang, Y., "Effect of Phosphoric Acid on HZSM-5 Catalysts for Prins Condensation to Isoprene from Isobutylene and Formaldehyde," Chem. Res. Chin. Univ., 34, 485-489(2018). https://doi.org/10.1007/s40242-018-7236-9