References
- Ibrahim, H., Ilinca, A. and Perron, J., "Energy Storage Systemscharacteristics and Comparisons," Renew. Sustain. Energy Rev., 12, 1221-1250(2008). https://doi.org/10.1016/j.rser.2007.01.023
- Hyun, K., Kang, S. and Kwon, Y., "Performance Evaluation of Glucose Oxidation Reaction Using Biocatalysts Adopting Different Quinone Derivatives and Their Utilization in Enzymatic Biofuel Cells," Korean J. Chem. Eng., 36, 500-504(2019). https://doi.org/10.1007/s11814-018-0218-2
- Christwardana, M., Chung, Y., Kim, D. H. and Kwon, Y., "Glucose Biofuel Cells Using The Two-step Reduction Reaction of Bienzyme Structure as Cathodic Catalyst," J. Ind. Eng. Chem., 71, 435-444(2019). https://doi.org/10.1016/j.jiec.2018.11.056
- Christwardana, M., Frattini, D., Duarte, K. D., Accardo, G. and Kwon, Y., "Carbon Felt Molecular Modification and Biofilm Augmentation via Quorum Sensing Approach in Yeast-based Microbial Fuel Cells," Appl. energy, 238, 239-248(2019). https://doi.org/10.1016/j.apenergy.2019.01.078
- Christwardana, M., Chung, Y., Tannia, D. C. and Kwon, Y., "Effects of the Gold Nanoparticles Including Different Thiol Functional Groups on the Performances of Glucose-oxidase-based Glucose Sensing Devices," Korean J. Chem. Eng., 35, 2421-2429(2018). https://doi.org/10.1007/s11814-018-0163-0
- Chung, Y., Jeong, J., Pham, H. T. T., Lee, J. and Kwon, Y., "Sulfenic Acid Doped Mesocellular Carbon Foam as Powerful Catalyst for Activation of V (II)/V (III) Reaction in Vanadium Redox Flow Battery," J. Electrochem. Soc., 165, A2703-A2708(2018). https://doi.org/10.1149/2.0741811jes
- Noh, C., Lee, C., Chi, W. S., Chung, Y., Kim, J. and Kwon, Y., "Nitrogen-doped Carbon Nanotube Decorated Electrocatalysts Derived from Metal-organic Framework for Performance Enhancement of Vanadium Redox Flow Battery," J. Electrochem. Soc., 165, A1388-A1399(2018). https://doi.org/10.1149/2.0621807jes
- Lee, W., Jo, C., Youk, S., Shin, H. Y., Lee, J., Chung, Y. and Kwon, Y., "Mesoporous Tungsten Oxynitride as Electrocatalyst for Promoting Redox Reactions of Vanadium Redox Couple and Performance of Vanadium Redox Flow Battery," Appl. Surf. Sci., 429, 187-195(2018). https://doi.org/10.1016/j.apsusc.2017.07.022
- Yue, L., Li, W., Sun, F., Zhao, L. and Xing, L., "Highly Hydroxylated Carbon Fibres as Electrode Materials of All-vanadium Redox Flow Battery," Carbon, 48, 3079-3090(2010). https://doi.org/10.1016/j.carbon.2010.04.044
- Alotto, P., Guarnieri, M. and Moro, F., "Redox Flow Batteries for the Storage of Renewable Energy: A Review," Renew. Sustain. Energy Rev., 29, 325-335(2014). https://doi.org/10.1016/j.rser.2013.08.001
-
Xi, J., Wu, Z., Qiu, X. and Chen, L., "Nafion/
$SiO_2$ Hybrid Membrane for Vanadium Redox Flow Battery," J. Power Sources, 166, 531-536(2007). https://doi.org/10.1016/j.jpowsour.2007.01.069 - Bartolozzi, M., "Development of Redox Flow Batteries. A Historical Bibliography," J. Power Sources, 27, 219-234(1989). https://doi.org/10.1016/0378-7753(89)80037-0
- Moon, S., Kwon, B. W., Chung, Y. and Kwon, Y., "Effect of Bismuth Sulfate Coated on Acidified CNT on Performance of Vanadium Redox Flow Battery," J. Electrochem. Soc., 166, A2602-A2609(2019). https://doi.org/10.1149/2.1181912jes
- Jung, M., Lee, W., Noh, C., Konovalova, A., Yi, G. S., Kim, S., Kwon, Y. and Henkensmeier, D., "Blending Polybenzimidazole with an Anion Exchange Polymer Increases the Efficiency of Vanadium Redox Flow Batteries," J. Memb. Sci., 580, 110-116 (2019). https://doi.org/10.1016/j.memsci.2019.03.014
- Noh, C., Kwon, B. W., Chung, Y. and Kwon, Y., "Effect of the Redox Reactivity of Vanadium Ions Enhanced by Phosphorylethanolamine Based Catalyst on the Performance of Vanadium Redox Flow Battery," J. Power Sources, 406, 26-34(2018). https://doi.org/10.1016/j.jpowsour.2018.10.042
- Chung, Y., Jeong, J., Pham, H. T. T., Lee, J. and Kwon, Y., "Sulfenic Acid Doped Mesocellular Carbon Foam as Powerful Catalyst for Activation of V (II)/V (III) Reaction in Vanadium Redox Flow Battery," J. Electrochem. Soc., 165, A2703-A2708(2018). https://doi.org/10.1149/2.0741811jes
- Lee, W., Permatasari, A., Kwon, B. W. and Kwon, Y., "Performance Evaluation of Aqueous Organic Redox Flow Battery Using Anthraquinone-2,7-disulfonic Acid Disodium Salt and Potassium Iodide Redox Couple," Chem. Eng. J., 358, 1438-1445(2019). https://doi.org/10.1016/j.cej.2018.10.159
- Lee, W. and Kwon, Y., "Performance Evaluation of Aqueous Organic Redox Flow Battery Using Methylene Blue and Vanadium Redox Couple," Korean Chem. Eng. Res., 56, 890-894(2018).
- Lee, W., Chung, K. and Kwon, Y., "Performance Evaluation of Aqueous Organic Redox Flow Battery using Anthraquinone and Benzoquinone Redox Couple with Ammonium Chloride Electrolyte," Korean Chem. Eng. Res., 57, 239-243(2019).
- Lee, W., Kwon, B. W. and Kwon, Y., "Effect of Carboxylic Acid-doped Carbon Nanotube Catalyst on the Performance of Aqueous Organic Redox Flow Battery Using the Modified Alloxazine and Ferrocyanide Redox Couple," ACS Appl. Mater. Interfaces, 10, 36882-36891(2018). https://doi.org/10.1021/acsami.8b10952
-
Chen, Q., Gerhardt, M. R., Hartle, L. and Aziz, M. J., "A Quinone-bromide Flow Battery with 1
$W/cm^2$ Power Density," J. Electrochem. Soc., 163, A5010-A5013(2016). https://doi.org/10.1149/2.0021601jes - Lin, K., Gomez-Bombarelli, R., Beh, E. S., Tong, L., Chen, Q., Valle, A., Aspuru-Guzik, A., Aziz, M. J. and Gordon, R. G., "A Redox-flow Battery with an Alloxazine-based Organic Electrolyte," Nat. Energy, 1, 16102(2016). https://doi.org/10.1038/nenergy.2016.102
- Janoschka, T., Martin, N., Hager, M. D. and Schubert, U. S., "An Aqueous Redox-Flow Battery with High Capacity and Power: The TEMPTMA/MV System," Angew. Chem. Int. Ed., 55, 14427-14430 (2016). https://doi.org/10.1002/anie.201606472
- DeBruler, C., Hu, B., Moss, J., Luo, J. and Liu, T. L., "A Sulfonate-functionalized Viologen Enabling Neutral Cation Exchange, Aqueous Organic Redox Flow Batteries Toward Renewable Energy storage," ACS Energy Lett., 3, 663-668(2018). https://doi.org/10.1021/acsenergylett.7b01302
- Hu, B., DeBruler, C., Rhodes, Z. and Liu, T. L., "Long-cycling Aqueous Organic Redox Flow Battery (AORFB) Toward Sustainable and Safe Energy Storage," J. Am. Chem. Soc., 139, 1207-1214(2017). https://doi.org/10.1021/jacs.6b10984
- Weber, A. Z., Mench, M. M., Meyers, J. P., Ross, P. N., Gostick, J. T. and Liu, Q., "Redox Flow Batteries: a Review," J. Appl. Electrochem., 41, 1137(2011). https://doi.org/10.1007/s10800-011-0348-2
- Orita, A., Verde, M. G., Sakai, M. and Meng, Y. S., "The Impact of pH on Side Reactions for Aqueous Redox Flow Batteries Based on Nitroxyl Radical Compounds," J. Power Sources, 321, 126-134(2016). https://doi.org/10.1016/j.jpowsour.2016.04.136
- Wang, W. H. and Wang, X. D., "Investigation of Ir-modified Carbon Felt as the Positive Electrode of an All-vanadium Redox Flow Battery," Electrochim. Acta, 52, 6755-6762(2007). https://doi.org/10.1016/j.electacta.2007.04.121