DOI QR코드

DOI QR Code

Generation of Hydrogen from Hydrolysis Reaction of NaBH4 Using Sea Water

바닷물을 이용한 NaBH4 가수분해에 의한 수소발생

  • Lee, Daewoong (Department of Chemical Engineering, Sunchon National University) ;
  • Oh, Sohyeong (Department of Chemical Engineering, Sunchon National University) ;
  • Kim, Junseong (Department of Chemical Engineering, Sunchon National University) ;
  • Kim, Dongho (Department of Chemical Engineering, Sunchon National University) ;
  • Park, Kwon-Pil (Department of Chemical Engineering, Sunchon National University)
  • Received : 2019.07.08
  • Accepted : 2019.08.21
  • Published : 2019.12.01

Abstract

Sodium borohydride,$NaBH_4$, has many advantages as hydrogen source for portable proton exchange membrane fuel cells (PEMFC). When PEMFC is used for marine use, $NaBH_4$ hydrolysis using seawater is economical. Therefore, in this study, hydrogen was generated by using seawater instead of distilled water in the process of hydrolysis of $NaBH_4$. Properties of $NaBH_4$ hydrolysis reaction using activated carbon supported Co-B/C catalyst were studied. The yield of hydrogen decreased as $NaBH_4$ concentration and NaOH concentration were increased during $NaBH_4$ hydrolysis using sea water. At higher concentrations of $NaBH_4$ and NaOH, byproducts adhered to the surface of the catalyst after hydrolysis reaction using sea water, reduced hydrogen yield compared to distilled water. The activation energy of $NaBH_4$ hydrolysis is 59.3, 74.4 kJ/mol for distilled water and sea water, respectively. In order to increase the hydrogen generation rate in seawater as high as distilled water, the reaction temperature has to be increased by $80^{\circ}C$ or more.

이동용 고분자전해질 연료전지(PEMFC)의 수소발생용으로써 $NaBH_4$는 많은 장점을 갖고 있다. 해상용으로 PEMFC가 사용될 때 해수를 이용해 $NaBH_4$를 가수분해 하면 경제적이다. 그래서 본 연구에서는 $NaBH_4$ 가수분해 과정에 증류수대신 해수를 이용해 수소를 발생시켰다. 활성탄 담지 Co-B/C 촉매를 사용해 $NaBH_4$ 가수분해 특성에 대해 연구하였다. 해수 사용시 $NaBH_4$ 농도와 NaOH농도가 증가하면서 수소수율이 감소하였다. 높은 $NaBH_4$와 NaOH농도에서 촉매 표면에 부산물이 부착되어 증류수에 비해 수소수율이 감소했다. $NaBH_4$ 가수분해 활성화에너지는 증류수와 해수 각각 59.3, 74.4kJ/mol로 해수에서 수소발생속도를 증류수와 같이 높이려면 반응온도를 $80^{\circ}C$이상 상승시켜야 함을 보였다.

Keywords

References

  1. Commercial Drones: Highways in the Sky, Unmanned Aerial Systems (UAS), Market Shares, Strategies, and Forecasts, Worldwide, 2015 to 2021, http//wintergreenresearch.com/reports/CommercialUAS.html.
  2. Bradley, T. H., Moffitt, B. A., Mavris, D. N. and Parekh, D. E., "Development and Experimental Characterization of a Fuel Cell Powered Aircraft," J. Power Sources, 171, 793-801(2007). https://doi.org/10.1016/j.jpowsour.2007.06.215
  3. Liu, B. H. and Li, Z. P., "A Review: Hydrogen Generation from Borohydride Hydrolysis Reaction," J. Power Sources, 187, 527-534(2009). https://doi.org/10.1016/j.jpowsour.2008.11.032
  4. Fernandes, R., Patel, N., Miotello, A., Jaiswal, R. and Korthari, D. C., "Stability, Durability, and Reusability Studies on Transition Metal-doped Co-B Alloy Catalysts for Hydrogen Production," Int. J. Hydrogen Energy, 36, 13379-13391(2011). https://doi.org/10.1016/j.ijhydene.2011.08.021
  5. Moon, G. Y., Lee, S. S., Yang, G. R. and Song, K. H., "Effects of Organic Acid Catalysts on the Hydrogen Generation from $NaBH_4$," Korean J. Chem. Eng., 27(2), 474-479(2010). https://doi.org/10.1007/s11814-010-0072-3
  6. Simagina, V. I., Netskina, O. V., Komova, O. V., Odegova, G. V., Kochubei, D. I. and Ishchenko, A. V., "Activity of Rh/$TiO_2$ Catalysts in NaBH4 Hydrolysis: The Effect of the Interaction Between $RhCl_3$ and the Anatase Surface During Heat Treatment," Kinetics and Catalysis, 49(4), 568-573(2008). https://doi.org/10.1134/S0023158408040174
  7. Simagina, V. I., Storozhenko, P. A., Netskina, O. V., Komova, O. V., Odegova, G. V., Samoilenko, T. Y. and Gentsler, A. G., "Effect of the Nature of the Active Component and Support on the Activity of Catalysts for the Hydrolysis of Sodium Borohydride," Kinetics and Catalysis, 48(1), 168-175(2007). https://doi.org/10.1134/S0023158407010223
  8. Demirci, U. B. and Garin, F., "Promoted Sulphated-zirconia Catalysed Hydrolysis of Sodium Tetrahydroborate," Catal. Commun., 9(6), 1167-1172(2008). https://doi.org/10.1016/j.catcom.2007.10.028
  9. Chen, Y. and Kim, H., "Ni/Ag/silica Nanocomposite Catalysts for Hydrogen Generation from Hydrolysis of $NaBH_4$ Solution," Mater. Lett., 62, 1451-1454(2008). https://doi.org/10.1016/j.matlet.2007.08.084
  10. Hwang, B. C., Jo, A. R., Sin, S. J., Choi, D. K., Nam, S. W. and Park, K. P., "$NaBH_4$ Hydrolysis Reaction Using Co-P-B Catalyst Supported on FeCrAlloy," Korean Chem. Eng. Res., 51(1), 35-41(2013). https://doi.org/10.9713/kcer.2013.51.1.35
  11. Lee, H. R., Na, I. C. and Park, K. P., "Characteristics of Hydrolysis Reaction Using Unsupported Catalyst at High Concentration of $NaBH_4$ Solutions," Korean Chem. Eng. Res., 54(5), 587-592(2016). https://doi.org/10.9713/kcer.2016.54.5.587
  12. Oh, S. J., Jung, H. S., Jeong, J. J., Na, I. C., Ahn, H. G. and Park, K. P., "Hydrolysis Reaction of $NaBH_4$ Using Unsupported Co-B, Co-P-B Catalyst," Korean Chem. Eng. Res., 53(1), 11-15(2015). https://doi.org/10.9713/kcer.2015.53.1.11
  13. Hwang, B. C., Jo, J. Y., Sin, S. J., Choi, D. K., Nam, S. W. and Park, K. P., "Study on the Hydrogen Yield of $NaBH_4$ Hydrolysis Reaction," Korean Chem. Eng. Res., 49(5), 516-520(2011). https://doi.org/10.9713/kcer.2011.49.5.516