DOI QR코드

DOI QR Code

Behavior of sand columns reinforced by vertical geotextile encasement and horizontal geotextile layers

  • Shamsi, Mohammad (Department of Civil Engineering, Kharazmi University of Tehran) ;
  • Ghanbari, Ali (Department of Civil Engineering, Kharazmi University of Tehran) ;
  • Nazariafshar, Javad (Department of Civil Engineering, Shahr-e-Qods Branch, Islamic Azad University)
  • Received : 2019.05.03
  • Accepted : 2019.11.08
  • Published : 2019.11.20

Abstract

In this paper, the effect of a group of sand columns in the loose soil bed using triaxial tests was studied. To investigate the effect of geotextile reinforcement type on the bearing capacity of these sand columns, Vertical encased sand columns (VESCs) and horizontally reinforced sand columns (HRSCs) were used. Number of sixteen independent triaxial tests and finite element simulation were performed on specimens with a diameter of 100 mm and a height of 200 mm. Specimens were reinforced by either a single sand column or three sand columns with the same area replacement ratio (16%) to evaluate the Influence of the column arrangement. Effect the number of sand columns, the length of vertical encasement and the number of horizontal reinforcing layers were investigated, in terms of bearing capacity improvement and economy. The results indicated that the ultimate bearing capacity of the samples with three ordinary sand columns (OSCs) is eventually about 11% more than samples with an OSC. Also, comparison of the column reinforcing modes showed that four horizontal layers of geotextile achieved similar performance to a vertical encasement geotextile at the 50% of the column height, from the viewpoint of strength improvement, while from the viewpoint of economy, the geotextile needed for encasing the single column is around 2.5 times of the geotextile required for four layers.

Keywords

References

  1. Ali, K., Shahu, J.T. and Sharma, K.G. (2012), "Model tests on geosynthetic-reinforced stone columns: a comparative study", Geosynth. Int., 19(4), 292-305. http://dx.doi.org/10.1680/gein.12.00016.
  2. Ali, K., Shahu, J.T., Sharma, K.G. (2014), "Model tests on single and groups of stone columns with different geosynthetic reinforcement arrangement", Geosynth. Int., 21(2), 103-118. http://dx.doi.org/10.1680/gein.14.00002.
  3. Alkhorshid, N.R., Araujo, G.L., Palmeira, E.M. and Zornberg, J.G. (2019), "Large-scale load capacity tests on a geosynthetic encased column", Geotext. Geomembr., 103458. https://doi.org/10.1016/j.geotexmem.2019.103458.
  4. Ambily, A.P. and Gandhi, S.R. (2007), "Behavior of stone columns based on experimental and FEM analysis", J. Geotech. Geoenviron. Eng., 133(4), 405-415. https://doi.org/10.1061/(ASCE)1090-0241(2007)133:4(405).
  5. Aslani, M., Nazariafshar, J. and Ganjian, N. (2019), "Experimental study on shear strength of cohesive soils reinforced with stone columns", Geotech. Geol. Eng., 37(3), 2165-2188. https://doi.org/10.1007/s10706-018-0752-z.
  6. Barksdale, R.D. and Bachus, R.C. (1983), "Design and Construction of Stone Columns Volume I", Federal Highway Administration Report FHWA. RD-83/026; National Technical Information Service, Springfield, Virginia, U.S.A.
  7. Black, J.A., Sivakumar, M.R., Madhav, M.R. and Hamiil, G.A. (2007a), "Reinforced stone columns in weak deposits:Laboratory model study", J. Geotech. Geoenviron. Eng., 133(9), 1154-1161. https://doi.org/10.1061/(ASCE)1090-0241(2007)133:9(1154).
  8. Black, J.A., Sivakumar, V. and Bell, A. (2011), "The settlement performance of stone column foundations", Geotechnique, 61(11), 909-922. https://doi.org/10.1680/geot.9.P.014.
  9. Black, J.A., Sivakumar, V. and McKelvey, D. (2007b), "Performance of clay samples reinforced with vertical granular columns", Can. Geotech. J., 44(1), 89-95. https://doi.org/10.1139/t06-081.
  10. Budhu, M. (2015), Soil Mechanics Fundamentals. John Wiley & Sons.
  11. Castro, J. (2017), "Groups of encased stone columns: Influence of column length and arrangement", Geotext. Geomembr., 45(2), 68-80. https://doi.org/10.1016/j.geotexmem.2016.12.001.
  12. Cengiz, C., Kilic, I.E. and Guler, E. (2019), "On the shear failure mode of granular column embedded unit cells subjected to static and cyclic shear loads", Geotext. Geomembr., 47(2), 193-202. https://doi.org/10.1016/j.geotexmem.2016.12.001.
  13. Das, B.M. (2013), Advanced Soil Mechanics, CRC Press.
  14. Dash, S.K. and Bora, M.C. (2013), "Influence of geosynthetic encasement on the performance of stone columns floating in soft clay", Can. Geotech. J., 50(7), 754-765. https://doi.org/10.1139/cgj-2012-0437.
  15. Deb, K. and Majee, A. (2014), "Probability-based design charts for stone column-improved ground", Geomech. Eng, 7(5), 539-552. http://dx.doi.org/10.12989/gae.2014.7.5.539.
  16. Deb, K., Samadhiya, N.K. and Namdeo, J.B. (2011), "Laboratory model studies on unreinforced and geogrid-reinforced sand bed over stone column-improved soft clay", Geotext. Geomembr., 29(2), 190-196. https://doi.org/10.1016/j.geotexmem.2010.06.004.
  17. Debnath, P. and Dey, A.K. (2017), "Bearing capacity of geogrid reinforced sand over encased stone columns in soft clay", Geotext. Geomembr., 45(6), 653-664. https://doi.org/10.1016/j.geotexmem.2017.08.006.
  18. Demir, A. and Sarici, T. (2017), "Bearing capacity of footing supported by geogrid encased stone columns on soft soil", Geomech. Eng., 12(3), 417-439. https://doi.org/10.12989/gae.2017.12.3.417.
  19. Demir, A., Yildiz, A., Laman, M. and Ornek, M. (2014), "Experimental and numerical analyses of circular footing on geogrid-reinforced granular fill underlain by soft clay", Acta Geotechnica, 9(4), 711-723. https://doi.org/10.1007/s11440-013-0207-x.
  20. Fattah, M.Y., Zabar, B.S. and Hassan, H.A. (2016), "Experimental analysis of embankment on ordinary and encased stone columns", Int. J. Geomech., 16(4), 04015102. https://doi.org/10.1061/(ASCE)GM.1943-5622.0000579.
  21. Fox, Z.P. (2011), "Critical state, dilatancy and particle breakage of mine waste rock", Ph.D. Dissertation, Colorado State University, Fort Collins, Colorado, U.S.A.
  22. Frikha, W., Bouassida, M. and Canou, J. (2014), "Parametric study of a clayey specimen reinforced by a granular column", Int. J. Geomech., 15(5), 04014078. https://doi.org/10.1061/(ASCE)GM.1943-5622.0000419.
  23. Frikha, W., Tounekti, F., Kaffel, W. and Bouassida, M. (2015), "Experimental study for the mechanical characterization of Tunis soft soil reinforced by a group of sand columns", Soils Found., 55(1), 181-191. https://doi.org/10.1016/j.sandf.2014.12.014.
  24. Ghazavi, M. and Afshar, J.N. (2013), "Bearing capacity of geosynthetic encased stone columns", Geotext. Geomembr., 38, 26-36. https://doi.org/10.1016/j.geotexmem.2013.04.003.
  25. Ghazavi, M., Yamchi, A.E. and Afshar, J.N. (2018) "Bearing capacity of horizontally layered geosynthetic reinforced stone columns", Geotext. Geomembr., 46(3), 312-318. https://doi.org/10.1016/j.geotexmem.2018.01.002.
  26. Gniel, J. and Bouazza, A. (2009), "Improvement of soft soils using geogrid encased stone columns", Geotext. Geomembr., 27(3), 167-175. https://doi.org/10.1016/j.geotexmem.2008.11.001.
  27. Gu, M., Han, J. and Zhao, M. (2017), "Three-dimensional discrete-element method analysis of stresses and deformations of a single geogrid-encased stone column", Int. J. Geomech., 17(9), 04017070. https://doi.org/10.1061/(ASCE)GM.1943-5622.0000952.
  28. Guetif, Z, Bouassida, M. and Debats, J.M. (2007), "Improved soft clay characteristics due to stone column installation", Comput. Geotech., 34(2), 104-111. https://doi.org/10.1016/j.compgeo.2006.09.008.
  29. Han, J., Oztoprak, S., Parsons, R.L. and Huang, J. (2007), "Numerical analysis of foundation columns to support widening of embankments", Comput. Geotech., 34(6), 435-448. https://doi.org/10.1016/j.compgeo.2007.01.006.
  30. Hassen, G., de Buhan, P. and Abdelkrim, M. (2010), "Finite element implementation of a homogenized constitutive law for stone column-reinforced foundation soils, with application to the design of structures", Comput. Geotech., 37(1-2), 40-49. https://doi.org/10.1016/j.compgeo.2009.07.002.
  31. Hong, Y.S. and Wu, C.S. (2013), "The performance of a sand column internally reinforced with horizontal reinforcement layers", Geotext. Geomembr., 41, 36-49. https://doi.org/10.1016/j.geotexmem.2013.10.002.
  32. Hosseinpour, I., Riccio, M. and Almeida, M.S. (2014), "Numerical evaluation of a granular column reinforced by geosynthetics using encasement and laminated disks", Geotext. Geomembr., 42(4), 363-373. https://doi.org/10.1016/j.geotexmem.2014.06.002.
  33. Hughes, J.M.O. and Withers, N.J. (1974), "Reinforcing of soft cohesive soils with stone columns", Ground Eng., 7(3), 42-49.
  34. Juran, I. and Guermazi, A. (1988), "Settlement response of soft soils reinforced by compacted sand columns", J. Geotech. Eng., 114(8), 930-943. https://doi.org/10.1061/(ASCE)0733-9410(1988)114:8(930).
  35. Kadhim, S.T., Parsons, R.L. and Han, J. (2018), "Threedimensional numerical analysis of individual geotextile-encased sand columns with surrounding loose sand", Geotext. Geomembr., 46(6), 836-847. https://doi.org/10.1016/j.geotexmem.2018.08.002.
  36. Keykhosropur, L., Soroush, A. and Imam, R. (2012), "3D numerical analyses of geosynthetic encased stone columns", Geotext. Geomembr., 35, 61-68. https://doi.org/10.1016/j.geotexmem.2012.07.005.
  37. Lee, K.Z.Z., Chang, N.Y. and Ko, H.Y. (2010), "Numerical simulation of geosynthetic-reinforced soil walls under seismic shaking", Geotext. Geomembr., 28(4), 317-334. https://doi.org/10.1016/j.geotexmem.2009.09.008.
  38. Lo, S.R., Zhang, R. and Mak, J. (2010), "Geosynthetic-encased stone columns in soft clay: A numerical study", Geotext. Geomembr., 28(3), 292-302. https://doi.org/10.1016/j.geotexmem.2009.09.015.
  39. Madhavi, L. and Murthy, V.S. (2007), "Effects of reinforcement form on the behavior of geosynthetic reinforced sand", Geotext. Geomembr., 25(1), 23-32. https://doi.org/10.1016/j.geotexmem.2006.09.002.
  40. Malarvizhi, S.N. and Ilamparuthi, K. (2007), "Comparative study on the behavior of encased stone column and conventional stone column", Soils Found., 47(5), 873-885. https://doi.org/10.3208/sandf.47.873.
  41. Mazumder, T., Rolaniya, A.K. and Ayothiraman, R. (2018), "Experimental study on behaviour of encased stone column with tyre chips as aggregates", Geosynth. Int., 25(3), 259-270. https://doi.org/10.1680/jgein.18.00006.
  42. McGuire, M., Sloan, J. and Filz, G. (2019), "Effectiveness of geosynthetic-reinforcement for load transfer in columnsupported embankments", Geosynth. Int., 1-48. https://doi.org/10.1680/jgein.19.00012.
  43. McKelvey, D., Sivakumar, V., Bell, A. and Graham, J. (2004), "Modelling vibrated stone columns in soft clay", Proc. Inst. Civ. Eng. Geotech. Eng., 157(3), 137-149. https://doi.org/10.1680/geng.2004.157.3.137
  44. Miranda, M. and Costa, A.D. (2016), "Laboratory analysis of encased stone columns", Geotext. Geomembr., 44(3), 269-277. https://doi.org/10.1016/j.geotexmem.2015.12.001.
  45. Muir Wood, D., Hu, W. and Nash, D.F.T. (2000), "Group effects in stone column foundations: model tests", Geotechnique, 50(6), 689-698. https://doi.org/10.1680/geot.2000.50.6.689.
  46. Najjar, S.S., Sadek, S. and Maakaroun, T. (2010), "Effect of sand columns on the undrained load response of soft clays", J. Geotech. Geoenviron. Eng., 136(9), 1263-1277. https://doi.org/10.1061/(ASCE)GT.1943-5606.0000328.
  47. Nazariafshar, J. and Ghazavi, M. (2014), "Experimental studies on bearing capacity of geosynthetic reinforced stone columns", Arab. J. Sci. Eng., 39(3), 1559-1571. https://doi.org/10.1007/s13369-013-0709-8.
  48. Nguyen, M.D., Yang, K.H., Lee, S.H., Wu, C.S. and Tsai, M.H. (2013), "Behavior of nonwoven-geotextile-reinforced sand and mobilization of reinforcement strain under triaxial compression", Geosynth. Int., 20(3), 207-225. http://dx.doi.org/10.1680/gein.13.00012.
  49. Selvakumar, S. and Soundara, B. (2019), "Swelling behaviour of expansive soils with recycled geofoam granules column inclusion", Geotext. Geomembr., 47(1), 1-11. https://doi.org/10.1016/j.geotexmem.2018.08.007.
  50. Shahu, J.T. and Reddy, Y.R. (2011), "Clayey soil reinforced with stone column group: model tests and analyses", J. Geotech. Geoenviron. Eng., 137(12), 1265-1274. https://doi.org/10.1061/(ASCE)GT.1943-5606.0000552.
  51. Sivakumar, V., Jeludine, D.K.N.M., Bell, A., Glynn, D.T. and Mackinnon, P. (2011), "The pressure distribution along stone column in soft clay under consolidation and foundation loading", Geotechnique, 61(7), 613-620. https://doi.org/10.1680/geot.9.P.086
  52. Sivakumar, V., McKelvey, D., Graham, J. and Hughes, D. (2004), "Triaxial tests on model sand columns in clay", Can. Geotech. J., 41(2), 299-312. https://doi.org/10.1139/t03-097.
  53. Stoeber, J.N. (2012), "Effects of maximum particle size and sample scaling on the mechanical behavior of mine waste rock, a critical state approach", Ph.D. Dissertation, Colorado State University, Fort Collins, Colorado, U.S.A.
  54. Systemes, D. (2014), Abaqus Version 6.14-2. User Documentation.
  55. Tang, L., Cong, S., Ling, X., Lu, J. and Elgamal, A. (2015), "Numerical study on ground improvement for liquefaction mitigation using stone columns encased with geosynthetics", Geotext. Geomembr., 43(2), 190-195. https://doi.org/10.1016/j.geotexmem.2014.11.011.
  56. Trautmann, C. H., Kulhawy, F. H., & Longo, V. J. (1987). CUFAD:A Computer Program for Compression and Uplift Foundaton Analysis and Design in Foundation Engineering: Current Principles and Practices, 691-705.
  57. Vetri Selvan, A. and Raj, D. (2006), "Vibro replacement as foundation for tank farms in India", Proceedings of the Indian Geotechnical Conference, Chennai, India, December.
  58. Wu, C.S. and Hong, Y.S. (2008), "The behavior of a laminated reinforced granular column", Geotext. Geomembr., 26(4), 302-316. https://doi.org/10.1016/j.geotexmem.2007.12.003.
  59. Wu, C.S. and Hong, Y.S. (2009), "Laboratory tests on geosynthetic-encapsulated sand columns", Geotext. Geomembr., 27(2), 107-120. https://doi.org/10.1016/j.geotexmem.2008.09.003.
  60. Xue, J., Liu, Z. and Chen, J. (2019), "Triaxial compressive behaviour of geotextile encased stone columns", Comput. Geotech., 108, 53-60. https://doi.org/10.1016/j.compgeo.2018.12.010.
  61. Zhang, L. and Zhao, M. (2014), "Deformation analysis of geotextile-encased stone columns", Int. J. Geomech., 15(3), 04014053. https://doi.org/10.1061/(ASCE)GM.1943-5622.0000389.
  62. Zhang, L., Zhao, M., Shi, C. and Zhao, H. (2012), "Settlement calculation of composite foundation reinforced with stone columns", Int. J. Geomech., 13(3), 248-256. https://doi.org/10.1061/(ASCE)GM.1943-5622.0000212.