수자원분야에서의 기계학습 적용(2)

  • Published : 2019.10.15

Abstract

Keywords

References

  1. Araghinejad, S. (2013). Data-Driven Modeling: Using MATLAB in Water Resources and Environmental Engineering. Water Science and Technology Library, Springer.
  2. Chang, C.C. and Lin, C.J. (2001). LIBSVM: A Library for Support Vector Machines. Department of Computer Science, National Taiwan University, Taipei, Taiwan.
  3. Chau, K.W. and Wu, C.L. (2010). Hydrological Predictions Using Data-Driven Models Coupled with Data Preprocessing Techniques. Lambert Academic Publishing.
  4. Choi, H.G., Han, K.Y., Roh, H.S. and Park, S.J. (2013). Comparison of databased real-time flood forecasting model. Journal of the Korean Society of Civil Engineers, Vol. 33, No.5, pp. 1809-1827. https://doi.org/10.12652/Ksce.2013.33.5.1809
  5. Kim, H.I., Keum, H.J. and Han, K.Y. (2018). Estimation of inundation area by linking of rainfall-duration-flooding quantity relationship curve with self-organizing map. Journal of the Korean Society of Civil Engineers, Vol. 38, No.6, pp. 839-850. https://doi.org/10.12652/KSCE.2018.38.6.0839
  6. Kim, J.H., Lee, S.W. and Cha, S.M. (2016). Environmental Statistics & Data Analysis. Hannarae.
  7. Murphy, K.P. (2012). Machine Learning : A Probabilistic Perspective. Massachusetts Institute of Technology.
  8. Noh, Y.J. (2016). A comparison study on statistical modeling methods. Journal of the Korea Academia-Industiral cooperation Society. Vol. 17, No.5, pp. 645-652. https://doi.org/10.5762/KAIS.2016.17.5.645
  9. Park, J.H., Lee, J.J. and Lee, S.H. (2018). Statistical significance test of polynomial regression equation for Huff's quartile method of design rainfall. J. Korea Water Resour. Assoc., Vol. 51, No.3, pp. 263-272. https://doi.org/10.3741/JKWRA.2018.51.3.263
  10. Pradhan, B. (2009). Flood susceptible mapping and risk area delineation using logistic regression, GIS and remote sensing. Journal of Spatial Hydrology, Vol. 9, No. 2, pp. 1-18.
  11. Robson, A.J., Jones, T.K., Reed, D.W. and Bayliss, A.C. (1997). A study of national trend and variation in UK floods. International J. Climatology, Vol. 18, pp.165-182. https://doi.org/10.1002/(SICI)1097-0088(199802)18:2<165::AID-JOC230>3.0.CO;2-#
  12. Sun, A.Y., Wang, D. and Xu, X. (2014). Monthly streamflow forecasting using gaussian process regression. Journal of Hydrology. Vol. 511, pp. 72-82. https://doi.org/10.1016/j.jhydrol.2014.01.023
  13. Vapnic, V.N. (1998). Statistical Learning Theory. John Wiley & Sons, New York.
  14. Yu, P.S., Chen, S.T. and Chang, I.F. (2006). Support vector regression for real-time flood stage forecasting. Journal of Hydrology, 328, 704-716. https://doi.org/10.1016/j.jhydrol.2006.01.021