References
- Bitsuamlak, G., Stathopoulos, T. and Bedard, C. (2006), "Effects of upstream two-dimensional hills on design wind loads: a computational approach", Wind Struct., 9(1), 37-58. http://dx.doi.org/10.12989/was.2006.9.1.037.
- Bourdin, P. and Wilson, J.D. (2008), "Windbreak aerodynamics: is computational fluid dynamics reliable?", Bound.-Lay. Meteorol., 126(2), 181-208. https://doi.org/10.1007/s10546-007-9229-y.
- Burges, C.J. (1998), "A tutorial on support vector machines for pattern recognition", Data Min. Knowl. Disc., 2(2), 121-167. https://doi.org/10.1023/A:1009715923555.
- Chen, G., Wang, W., Sun, C. and Li, J. (2012), "3D numerical simulation of wind flow behind a new porous fence", Powder Technol., 230, 118-126. https://doi.org/10.1016/j.powtec.2012.07.017.
- Chen, K., Zhu, F. and Niu, Z. (2006), "Evaluation on shelter effect of porous windbreak fence through wind tunnel test", Acta Scientiarum Naturalium-Universitatis Pekinensis, 42(5), 636.
-
Chen, Q. (1995), "Comparison of different k-
${\varepsilon}$ models for indoor air flow computations", Numer. Heat Tr. Part B Fund., 28(3), 353-369. https://doi.org/10.1080/10407799508928838. - Chen, S.T. and Yu, P.S. (2007), "Pruning of support vector networks on flood forecasting", J. Hydrology, 347(1-2), 67-78. https://doi.org/10.1016/j.jhydrol.2007.08.029.
- Cheng, J.J., Lei, J.Q., Li, S.Y. and Wang, H.F. (2016), "Effect of hanging-type sand fence on characteristics of wind-sand flow fields", Wind Struct., 22(5), 555-571. https://doi.org/10.12989/was.2016.22.5.555.
- Cornelis, W.M. and Gabriels, D. (2005), "Optimal windbreak design for wind-erosion control", J. Arid Environ., 61(2), 315-332. https://doi.org/10.1016/j.jaridenv.2004.10.005.
- Cortes, C. and Vapnik, V. (1995), "Support-vector networks", Machine Learning, 20(3), 273-297. https://doi.org/10.1007/BF00994018.
- Cristianini, N. and Shawe-Taylor, J. (2000), "An Introduction to Support Vector Machines and Other Kernel-Based Learning Methods", Cambridge university press.
- Dong, Z., Luo, W., Qian, G. and Wang, H. (2007), "A wind tunnel simulation of the mean velocity fields behind upright porous fences", Agricultural Forest Meteorol., 146(1-2), 82-93. https://doi.org/10.1016/j.agrformet.2007.05.009.
- Dong, Z., Luo, W., Qian, G., Lu, P. and Wang, H. (2010), "A wind tunnel simulation of the turbulence fields behind upright porous wind fences", J. Arid Environ., 74(2), 193-207. https://doi.org/10.1016/j.jaridenv.2009.03.015.
- Ferreira, A.D. (2011), "Structural design of a natural windbreak using computational and experimental modeling", Environ. Fluid Mech, 11(5), 517-530. https://doi.org/10.1007/s10652-010-9203-y.
- Grantz, D., Vaughn, D., Farber, R., Kim, B.O.N.G., VanCuren, T. and Campbell, R. (1998), "Wind barriers offer short-term solution to fugitive dust", California Agriculture, 52(4), 14-18. https://doi.org/10.3733/ca.v052n04p14.
- Gunn, S.R. (1998), "Support vector machines for classification and regression", ISIS Technical Report, 14(1), 5-16.
- Hagen, L.J. (1976), "Windbreak design for optimum wind erosion control," Publ Great Plains Agric Counc.
- Harish, N., Mandal, S., Rao, S. and Patil, S.G. (2015), "Particle Swarm Optimization based support vector machine for damage level prediction of non-reshaped berm breakwater", Appl. Soft Comput., 27, 313-321. https://doi.org/10.1016/j.asoc.2014.10.041.
- Hong, S.W., Lee, I.B. and Seo, I.H. (2015), "Modelling and predicting wind velocity patterns for windbreak fence design", J. Wind Eng. Ind. Aerod., 142, 53-64. https://doi.org/10.1016/j.jweia.2015.03.007.
- Janardhan, P., Pruthviraj, U. and Subhash, C.Y., (2011), "Shelter Effect of Porous Wind Fences in Open Coal Storage Yard at Harbour", LAP Lambert Academic Publishing. India.
- Jensen, M. (1954), "Shelter Effect: Investigations into Aerodynamics of Shelter and its Effects on Climate and Crops, The Danish Technical Press, Copenhagen.
- Kecman, V. (2001), "Learning and Soft Computing: Support Vector Machines, Neural Networks, and Fuzzy Logic Models", MIT press, Cambridge, MA, USA.
- Kim, H.B. and Lee, S.J. (2002), "The structure of turbulent shear flow around a two-dimensional porous fence having a bottom gap", J. Fluid. Struct., 16(3), 317-329. https://doi.org/10.1006/jfls.2001.0423.
- Kim, H.G., Kim, M.K., Kim, B.E. and Yoon, H.Y. (2005), "Optimization of fugitive dust control system for weather conditions", Research Institute of Industrial Science & Technology, 19(1), 21-31.
- Lee, S.J. and Park, C.W. (2000), "The shelter effect of porous wind fences on coal piles in POSCO open storage yard", J. Wind Eng. Ind. Aerod., 84(1), 101-118. https://doi.org/10.1016/S0167-6105(99)00046-X.
- Mandal, S., Subba Rao, Harish, N. and Lokesha (2012), "Damage level prediction of non-reshaped berm breakwater using ANN, SVM, and ANFIS models," Int. J. Nav. Archit. Ocean Eng., 4(2), 112-122. https://doi.org/10.2478/IJNAOE-2013-0082.
- Ni, Y.Q., Hua, X.G., Fan, K.Q. and Ko, J.M. (2005), "Correlating modal properties with temperature using long-term monitoring data and support vector machine technique", Eng. Struct., 27(12), 1762-1773. https://doi.org/10.1016/j.engstruct.2005.02.020.
- Packwood, A.R. (2000), "Flow through porous fences in thick boundary layers: comparisons between laboratory and numerical experiments", J Wind Eng. Ind. Aerod., 88(1), 75-90. https://doi.org/10.1016/S0167-6105(00)00025-8.
- Papesch, A.J.G. (1992), "Wind tunnel test to optimize barrier spacing and porosity to reduce wind damage in horticultural shelter systems", J. Wind Eng. Ind. Aerod., 44(1-3), 2631-2642. https://doi.org/10.1016/0167-6105(92)90055-F.
- Perera, M.D.A.E.S. (1981), "Shelter behind two-dimensional solid and porous fences", J. Wind Eng. Ind. Aerod., 8(1-2), 93-104. https://doi.org/10.1016/0167-6105(81)90010-6.
- Purthviraj, U, Janardhan, P., Yaragal, S.C. and Nagaraj M.K., (2011), "Study on shelter effect of solid wind fences", Int. J. Earth.Sci. Eng., 4(01), 158-164.
- Raine, J. K., and Stevenson, D. C. (1977), "Wind protection by model fences in a simulated atmospheric boundary layer", J Wind Eng. Ind. Aerod., 2(2), 159-180. https://doi.org/10.1016/0167-6105(77)90015-0.
- Sagrado, A.P.G., van Beeck, J., Rambaud, P. and Olivari, D. (2002), "Numerical and experimental modelling of pollutant dispersion in a street canyon", J. Wnd Eng. Ind. Aerod., 90(4-5), 321-339. https://doi.org/10.1016/S0167-6105(01)00215-X.
- Samui, P. (2008), "Predicted ultimate capacity of laterally loaded piles in clay using support vector machine", Geomech. Geoeng., 3(2), 113-120. https://doi.org/10.1080/17486020802050844.
- San, B., Wang, Y. and Qiu, Y. (2018), "Numerical simulation and optimization study of the wind flow through a porous fence", Environ. Fluid Mech., 18(5), 1057-1075. https://doi.org/10.1007/s10652-018-9580-1
- Santiago, J.L., Martin, F., Cuerva, A., Bezdenejnykh, N. and Sanz-Andres, A. (2007), "Experimental and numerical study of wind flow behind windbreaks", Atmos. Environ., 41(30), 6406-6420. https://doi.org/10.1016/j.atmosenv.2007.01.014.
- Song, C.K., Kim, J.J. and Song, D.W. (2007), "The effects of windbreaks on reduction of suspended particles", Atmosphere, 17(4), 315-326.
- Stredova, H., Podhrazska, J., Litschmann, T., Středa, T. and Roznovsky, J. (2012), "Aerodynamic parameters of windbreak based on its optical porosity", Contributions to Geophysics and Geodesy, 42(3), 213-226.
- Tani, N. (1958), "On the wind tunnel test of the model shelter hedge", Bull. Natl. Inst. Agrid. Sci., Ser. A 6, 75.
-
Van Maele, K. and Merci, B. (2006), "Application of two buoyancy-modified k-
${\varepsilon}$ turbulence models to different types of buoyant plumes", Fire Safety J., 41(2), 122-138. https://doi.org/10.1016/j.firesaf.2005.11.003. - Vapnik, V. (1998), "Statistical Learning Theory", Vol. 3, Wiley, New York.
- Vapnik, V. (2013), "The Nature of Statistical Learning Theory", Springer science & business media, New York, NY, USA
- Vapnik, V.N. (1999), "An overview of statistical learning theory", IEEE T. Neural Networ., 10(5).
- Vapnik, V.N., Golowich, S.E. and Smola, A.J. (1996), "Support vector machine for function approximation, regression estimation, and signal processing", Adv. Neural Inf. Process, 9, 281-287.
- Xu, Y. and Mustafa, M.Y. (2015), "Investigation of the structure of airflow behind a porous fence aided by CFD based virtual sensor data", Sensors & Transducers, 185(2), 149.
- Yang, M.H., Roth, D. and Ahuja, N. (2002), "A tale of two classifiers: SNoW vs. SVM in visual recognition", European Conference on Computer Vision, Springer, Berlin, Heidelberg, May, 685-699.
- You, J., Jeon, J., You, K. and Kim, Y. (2006), "Experiment of the shelter effect of porous wind fences base on the wind tunnel test", Proceedings of the 2006 Architectural Institute of Korea, 26(1), 81-84.