DOI QR코드

DOI QR Code

Safety Distance Visualization Tool for LTE-Based UAV Positioning in Urban Areas

도심 지역 LTE 측위 기반 무인항공기 안전거리 생성 알고리즘 연구 및 시각화 도구 개발

  • Lee, Halim (School of Integrated Technology, Yonsei University) ;
  • Kang, Taewon (School of Integrated Technology, Yonsei University) ;
  • Seo, Jiwon (School of Integrated Technology, Yonsei University)
  • 이하림 (연세대학교 글로벌융합공학부) ;
  • 강태원 (연세대학교 글로벌융합공학부) ;
  • 서지원 (연세대학교 글로벌융합공학부)
  • Received : 2019.08.13
  • Accepted : 2019.10.28
  • Published : 2019.10.31

Abstract

We developed a surveillance tool for collision avoidance of unmanned aerial vehicles (UAVs) in urban areas. In our tool, users can visualize the safety distance on the actual 3D map of urban area. The estimated positions of UAVs are assumed to be obtained based on the long-term evolution (LTE) signals. The safety distance is defined to include two or more signals with bias. The safety distance calculation method used in this paper enables simulation similar to the actual urban areas where signals are frequently biased due to multipath. In the simulation, the parameters were set based on the measured values, and the change of the safety distance according to the number of faulty signals was simulated. As a result, increasing the number of faulty signals led to a longer safety distance as expected.

본 연구에서는 도심지역의 무인항공기 충돌 방지를 위한 관제 도구를 개발하였다. 개발된 도구에서 사용자는 실제 도심지역 3D 지도상에 기지국과 무인항공기를 배치한 뒤, 안전 거리를 가시화할 수 있다. 이 때, 무인항공기의 위치는 long-term evolution(LTE) 신호를 기반으로 계산된다고 가정하였다. 또한, 무인항공기의 안전 거리는 거리 측정 오차의 바이어스가 발생한 신호를 포함하도록 정의되었다. 이러한 안전거리 계산 방식은 다중 경로에 의해 바이어스 신호가 빈번히 발생하는 실제 도심환경의 특성을 반영한다. 개발된 도구 상에서 실측값을 바탕으로 파라미터를 설정하고 고장 신호 개수에 따른 안전거리의 변화를 시뮬레이션하였다. 그 결과 고장 신호의 개수가 증가함에 따라 안전거리가 증가하는 정상적인 결과가 출력됨을 확인하였다.

Keywords

References

  1. F. Kendoul, “Survey of advances in guidance, navigation, and control of unmanned rotorcraft systems,” Journal of Field Robotics, Vol. 29, No. 2, pp. 315-378, 2012. https://doi.org/10.1002/rob.20414
  2. A. Puri, "A survey of unmanned aerial vehicles (UAV) for traffic surveillance," Department of Computer Science and Engineering, University of South Florida, pp. 1-29, 2005.
  3. P. Kopardekar, J. Rios, T. Prevot, M. Johnson, J. Jung, and J. E. Robinson, "Unmanned aircraft system traffic management (UTM) concept of operations," in Proceedings of the 16th AIAA, 2016.
  4. A. Rucco, P. B. Sujit, A. P. Aguiar, J. B. De Sousa, and F. L. Pereira, “Optimal rendezvous trajectory for unmanned aerial-ground vehicles,” IEEE Transactions on Aerospace and Electronic Systems, Vol. 54, No. 2, pp. 834-847, 2018. https://doi.org/10.1109/TAES.2017.2767958
  5. J. Lee, Y. T. Morton, J. Lee, H.-S. Moon, and J. Seo, “Monitoring and mitigation of ionospheric anomalies for GNSS-based safety critical systems,” IEEE Signal Processing Magazine, Vol. 34, No. 5, pp. 96-110, 2017. https://doi.org/10.1109/MSP.2017.2716406
  6. H.-J. Seok, D.-H. Yoon, C.-S. Lim, and B.-W. Park, "Suggestion on the SBAS augmentation message providing system for the low-cost GPS receiver of drone operation," The Journal of Korea Navigation Institute, Vol. 21, pp. 272-278, 2017.
  7. J. Seo, T. Walter, T.-Y. Chiou, J. Blanch, and P. Enge, "Evaluation of deep signal fading effects due to ionospheric scintillation on GPS aviation receivers," in Proceedings of the ION GNSS 2008, pp. 2397-2404, 2008.
  8. J. Seo and T. Walter, “Future dual-frequency GPS navigation system for intelligent air transportation under strong ionospheric scintillation,” IEEE Transactions on Intelligent Transportation Systems, Vol. 15, No. 5, pp. 2224-2236, 2014. https://doi.org/10.1109/TITS.2014.2311590
  9. K. Park, D. Lee, and J. Seo, "Dual-polarized GPS antenna array algorithm to adaptively mitigate a large number of interference signals," Aerospace Science and Technology, Vol. 78, pp. 387-396, 2018. https://doi.org/10.1016/j.ast.2018.04.029
  10. M. Kim, J. Seo, and J. Lee, “A comprehensive method for GNSS data quality determination to improve ionospheric data analysis,” Sensors, Vol. 14, No. 8, pp. 14971-14993, 2014. https://doi.org/10.3390/s140814971
  11. P. Xie and M. G. Petovello, “Measuring GNSS multipath distributions in urban canyon environments,” IEEE Transactions on Instrumentation and Measurement, Vol. 64, No. 2, pp. 366-377, 2014. https://doi.org/10.1109/TIM.2014.2342452
  12. J. H. Kim, J.-W. Kwon, and J. Seo, “Multi-UAV-based stereo vision system without GPS for ground obstacle mapping to assist path planning of UGV,” Electronics Letters, Vol. 50, No. 20, pp. 1431-1432, 2014. https://doi.org/10.1049/el.2014.2227
  13. H. Qi and J. B. Moore, “Direct Kalman filtering approach for GPS/INS integration,” IEEE Transactions on Aerospace and Electronic Systems, Vol. 38, No. 2, pp. 687-693, 2002. https://doi.org/10.1109/TAES.2002.1008998
  14. J. S. Greenfeld, "Matching GPS observations to locations on a digital map," in Proceedings of the 81th Annual Meeting of the TRB, Vol. 1, No. 3, pp. 164-173. 2002.
  15. Y. H. Shin, S. Lee, and J. Seo, "Autonomous safe landing-area determination for rotorcraft UAVs using multiple IR-UWB radars," Aerospace Science and Technology, Vol. 69, pp. 617-624, 2017. https://doi.org/10.1016/j.ast.2017.07.018
  16. P.-W. Son, J. H. Rhee, and J. Seo, “Novel multichain-based Loran positioning algorithm for resilient navigation,” IEEE Transactions on Aerospace and Electronic Systems, Vol. 54, No. 2, pp. 666-679, 2018. https://doi.org/10.1109/TAES.2017.2762438
  17. P.-W. Son, J. H. Rhee, J. Hwang, and J. Seo, “Universal kriging for Loran ASF map generation,” IEEE Transactions on Aerospace and Electronic Systems, Vol. 55, No. 4, pp. 1828-1842, 2018. https://doi.org/10.1109/taes.2018.2876587
  18. E. Kim, and J. Seo, “SFOL pulse: A high accuracy DME pulse for alternative aircraft position and navigation,” Sensors, Vol. 17, No. 10, pp. 2183, 2017. https://doi.org/10.3390/s17102183
  19. K. Shamaei, J. Khalife, and Z. M. Kassas, “Exploiting LTE signals for navigation: Theory to implementation,” IEEE Transactions on Wireless Communications, Vol. 17, No. 4, pp. 2173-2189, 2018. https://doi.org/10.1109/TWC.2018.2789882
  20. K. Shamaei and Z. M. Kassas, “LTE receiver design and multipath analysis for navigation in urban environments,” Navigation, Vol. 65, No. 4, pp. 655-675, 2018. https://doi.org/10.1002/navi.272
  21. A. Masiero, F. Fissore, A. Guarnieri, F. Pirotti, and A. Vettore, “UAV positioning and collision avoidance based on RSS measurements,” The International Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences, Vol. 40, No. 1, pp. 219, 2015.
  22. H. Lee, T. Kang, and J. Seo, "Development of Confidence Bound Visualization Tool for LTE-Based UAV Surveillance in Urban Areas," in Proceedings of the ICCAS 2019, 2019.
  23. J. Blanch, T. Walter, P. Enge, Y. Lee, B. Pervan, M. Rippl, and A. Spletter, "Advanced RAIM user algorithm description: integrity support message processing, fault detection, exclusion, and protection level calculation," in Proceedings of the ION GNSS 2012, pp. 2828-2849, 2012.
  24. V. Kropp, B. Eissfeller, and G. Berz, "Optimized MHSS ARAIM user algorithms: assumptions, protection level calculation and availability analysis," in Proceedings of the IEEE/ION PLANS 2014, pp. 308-323, 2014.
  25. J. Blanch, T. Walter, and P. Enge, "Exclusion for advanced RAIM: requirements and a baseline algorithm," in Proceedings of the ION ITM 2014, pp. 99-107, 2014.
  26. M. Mink, Performance of receiver autonomous integrity monitoring (RAIM) for maritime operations, Ph.D. dissertation, Karlsruhe Institute of Technology, Karlsruhe, 2016.
  27. W. Kim, T. Kang, and J. Seo, "Software-based model of urban canyon effect on GPS signals using 3D map data," in Proceedings of the 79th IRES, Art. No. 2656, 2016.
  28. VWorld Open API, [Internet] Available: http://dev.vworld.kr
  29. KCA Spectrum map. [Internet] Available: https://spectrummap.kr/index.do#.
  30. S. S. Jan, D. Gebre-Egziabher, T. Walter, and P. Enge, “Improving GPS-based landing system performance using an empirical barometric altimeter confidence bound,” IEEE Transactions on Aerospace and Electronic Systems, Vol. 44, No. 1, pp. 127-146, 2008. https://doi.org/10.1109/TAES.2008.4516994

Cited by

  1. The Power Amplifier Control Design of eLoran Transmitter vol.10, pp.3, 2021, https://doi.org/10.11003/jpnt.2021.10.3.229