DOI QR코드

DOI QR Code

Joint Distribution of Wave Crest and its Associated Period in Nonlinear Random Waves

비선형 파동계에서의 파고와 주기 결합 확률분포

  • Park, Su Ho (Department of Civil Engineering, University of Seoul) ;
  • Cho, Yong Jun (Department of Civil Engineering, University of Seoul)
  • 박수호 (서울시립대학교 토목공학과) ;
  • 조용준 (서울시립대학교 토목공학과)
  • Received : 2019.09.07
  • Accepted : 2019.10.24
  • Published : 2019.10.31

Abstract

The joint distribution of wave height and period has been maltreated despite of its great engineering value due to the absence of any analytical model for wave period, and as a result, no consensus has been reached about the effect of nonlinearity on these joint distribution. On the other hand, there was a great deal of efforts to study the effects of non-linearity on the wave height distribution over the last decades, and big strides has been made. However, these achievements has not been extended to the joint distribution of wave height and period. In this rationale, we first express the joint distribution of wave height and period as the product of the marginal distribution of wave heights with the conditional distribution of associated periods, and proceed to derive the joint distribution of wave heights and periods utilizing the models of Longuet-Higgins (1975, 1983), and Cavanie et al. (1976) for conditional distribution of wave periods, and height distribution derived in this study. The verification was carried out using numerically simulated data based on the Wallops spectrum, and the nonlinear wave data obtained via the numerical simulation of random waves approaching toward the uniform beach of 1:15 slope. It turns out that the joint distribution based on the height distribution for finite banded nonlinear waves, and Cavanie et al.'s model (1976) is most promising.

파고와 주기 결합분포는 그 공학적 가치에도 불구하고, 주기에 대한 해석 모형의 부재로 인해 파고 분포에 비해 상대적으로 소홀히 다루어져, 현재 비선형성이 주기분포에 미치는 영향에 대해서도 서로 다른 의견이 상존한다. 이에 비해 파고 분포의 경우, 많은 노력이 이루어져 성과가 상당하나, 아직 이러한 성과는 파고와 주기 결합분포로 확대되지 못하였다. 본 논문에서는 이러한 문제를 해결하기 위해 먼저 파고와 주기의 결합분포를 조건부 주기 분포와 파고 분포의 곱으로 정의하였다. 이어 비선형 불규칙 파동계에서의 파고 분포, 임의의 대역폭을 지니는 비선형 불규칙 파랑계에서의 파고분포를 유도하고, 이를 Longuet-Higgins(1975, 1983), Cavanie et al.(1976)의 조건부 주기확률분포와 결합하여 새로운 파고와 주기 결합분포를 제시하였다. 검증과정은 Wallops 스펙트럼에 기초하여 수치 모의된 파랑시계열자료와 경사가 1:15인 단조해안에서 진행되는 불규칙 파랑 천수과정 수치모의를 통해 얻은 강비선형 파랑자료를 활용하여 수행되었으며, 모의 결과 finite banded waves를 대상으로 한 파고 분포와 Cavanie et al. (1976)의 조건부 주기 확률분포를 활용하는 경우 가장 근접한 결과를 얻을 수 있었다.

Keywords

References

  1. Abramowitz, M. and Stegun, I. A. (1968). Handbook of mathematical functions, Dover, Mineola, NY.
  2. Cavanie, A., Arhan, M. and Ezraty, R. (1976). A statistical relationship between individual heights and periods of storm waves. Proc. Conf. on Behaviour of Offshore Structures, 2, 354-360.
  3. Cho, Y.J. (2019). Numerical analysis of the beach stabilization effect of an asymmetric ripple mat. Journal of Korean Society of Coastal and Ocean Engineers, 31(4), 209-220. https://doi.org/10.9765/KSCOE.2019.31.4.209
  4. Cho, Y.J. and Bae, J.H. (2019). On the feasibility of freak waves formation within the harbor due to the presence of infra-gravity waves of bound mode underlying the ever-present swells. Journal of Korean Society of Coastal and Ocean Engineers, 31(1), 17-27. https://doi.org/10.9765/KSCOE.2019.31.1.17
  5. Cho, Y.J. and Kang, Y.K. (2017). The effect of skewness of nonlinear waves on the transmission rate through a porous wave breaker. Journal of Korean Society of Coastal and Ocean Engineers, 29(6), 369-381. https://doi.org/10.9765/KSCOE.2017.29.6.369
  6. Cho, Y.J. and Kim, M.S. (2005). Statistical properties of wave groups in nonlinear random waves of finite bandwidth. International Journal of Offshore and Polar Engineering, 15(1), 14-20.
  7. Cho, Y.J. and Na, D.G. (2015). Numerical analysis of the depression effect of hybrid breaker on the run up height due to tsunami based on the modified leading depression N (LDN) wave generation technique. Journal of Korean Society of Coastal and Ocean Engineers, 27(1), 38-49. https://doi.org/10.9765/KSCOE.2015.27.1.38
  8. Dawson, T.H. (2004). Stokes correction for nonlinearity of wave crests in heavy seas. J. of Waterw., Port, Coastal and Ocean Eng., ASCE, 130(1), 39-44. https://doi.org/10.1061/(ASCE)0733-950X(2004)130:1(39)
  9. Fedele, F. and Arena, F. (2003). On the Statistics of High Nonlinear Random Waves, Proc., 13th Inter. Offshore and Polar Eng. Conf., ISOPE, Honolulu, Hawaii, USA, May 25-30, 17-22.
  10. Fedele, F. and Arena, F. (2005). Weakly nonlinear statistics of high random waves. Phys. of Fluids, APS, 17(1), paper no. 026601.
  11. Fedele, F. (2006). Extreme events in nonlinear random seas. J. of Offshore Mechanics and Arctic Eng., ASME, 128, 11-16. https://doi.org/10.1115/1.2151202
  12. Forristall, G.Z. (2000). Wave crest distribution: Observations and second-order theory. J. Phys. Oceanogr., 30, 1931-1943. https://doi.org/10.1175/1520-0485(2000)030<1931:WCDOAS>2.0.CO;2
  13. Frigaard, P. and Anderson, T.L. (2010). Technical Background Material for the Wave Generation Software AwaSys 5. DCE Technical Reports No. 64, Aalborg University.
  14. Haver, S. and Andersen, O.A. (2000). Freak Waves: Rare Realizations of a Typical Population or Typical Realizations of a Rare Population?, Proc., 10th Inter. Offshore and Polar Eng. Conf., ISOPE, Seattle, USA, May 28-June 2, 123-130.
  15. Huang, N.E., Long, S.R., Tung, C.C., Yuan, Y. and Bliven, L.F. (1981). A unified two-parameter wave spectral model for a general sea state. J. Fluid Mech., 112, 203-224. https://doi.org/10.1017/S0022112081000360
  16. Huang, N.E., Long, S.R., Tung, C.C., Yuan, Y. and Bliven, L.F. (1983). A non-Gaussian statistical model for surface elevation of nonlinear random wave fields. J. Geophys. Res., 88, 7597-7606. https://doi.org/10.1029/JC088iC12p07597
  17. Izadparast, A. and Niedzwecki, J. (2012). Application of semiempirical probability distributions in wave-structure interaction problems, ASME 2012 Fluid Engineering Division Summer Meeting collocated with the ASME 2012 Heat transfer Summer conference and the ASME 2012 10th International Conference, Vol. 1: Symposia, Part A and B.
  18. Jensen, J.J. (1996). Second-order wave kinematics conditional on a given wave crest. Appl. Ocean Res., Elsevier Science, 18(2), 119-128. https://doi.org/10.1016/0141-1187(96)00008-9
  19. Jensen, J.J. (2005), Conditional second-order short-crested water waves applied to extreme wave episodes. J. Fluid Mech., 545, 29-40. https://doi.org/10.1017/S0022112005006841
  20. Janssen, P.A.E.M. (2003). Nonlinear four-wave interactions and freak waves. J. Phys. Oceanogr., AMS, 33(4), 863-884. https://doi.org/10.1175/1520-0485(2003)33<863:NFIAFW>2.0.CO;2
  21. Longuet-Higgins, M.S. (1963). The effect of nonlinearities on statistical distributions in the theory of sea waves. J. Fluid Mech., 17, 459-480. https://doi.org/10.1017/S0022112063001452
  22. Longuet-Higgins, M.S. (1975). On the joint distribution of wave periods and amplitudes of sea waves. J. Geophys. Res., 80, 2688-2694. https://doi.org/10.1029/JC080i018p02688
  23. Longuet-Higgins, M.S. (1983). On the joint distribution of wave periods and amplitudes in a random wave field. Proc. Roy. Soc. of London, 389(A), 241-258. https://doi.org/10.1098/rspa.1983.0107
  24. Onorato, M., Osborne, A.R., Serio, M., Cavaleri, L., Brandini, C. and Stansberg, C.T. (2006). Extreme waves, modulational instability and second-order theory: Wave flume experiments on irregular waves. European Journal of Mechanics-B/Fluids, 25(5), 586-601. https://doi.org/10.1016/j.euromechflu.2006.01.002
  25. Papoulis, A. (1965). Probability, random variables and stochastic processes, McGraw-Hill book Co., New York, NY.
  26. Soares, G.C. and Carvalho, A. N. (2001). Probability distribution of wave heights and periods in measured two-peaked spectra from the Portuguese coast. Proceedings of OMAE 01, 20th International Conference on Offshore Mechanics and Artic Engineering.
  27. Soares, C.G. and Pascoal, R. (2005). On the profile of large ocean waves. J. of Offshore Mechanics and Arctic Eng., ASME, 127(4), 306-314. https://doi.org/10.1115/1.2087547
  28. Socquet-Juglard, H. (2005). Spectral Evolution and Probability Distributions of Surface Ocean Gravity Waves and Extreme Events. DSc. Thesis, Dept. of Math., Univ. of Bergen, Norway.
  29. Stansell, P. (2004). Distributions of freak wave heights measured in the North Sea. Appl. Ocean Res., Elsevier Science, 26, 35-48. https://doi.org/10.1016/j.apor.2004.01.004
  30. Tayfun, M.A. (1980). Narrow-band nonlinear sea waves. J. Geophys. Res., 85, 1548-1552. https://doi.org/10.1029/JC085iC03p01548
  31. Tayfun, M.A. (1986). On narrow-band representation of ocean waves 1, theory. J. Geophys. Res., 91, 7743-7752. https://doi.org/10.1029/JC091iC06p07743
  32. Tayfun, M.A. (1993). Joint distribution of large wave heights and associated periods. Journal of Waterway, Port, Coastal, and Ocean Engineering, 119(3), 261-273. https://doi.org/10.1061/(ASCE)0733-950X(1993)119:3(261)
  33. Tayfun, M.A. (1994). Distributions of envelope and phase in weakly nonlinear random waves. Journal of Engineering Mechanics, 120(5), 1009-1025. https://doi.org/10.1061/(ASCE)0733-9399(1994)120:5(1009)
  34. Tayfun, M.A. (2006), Statistics of nonlinear wave crests and groups. Ocean Engineering, 33(11), 1589-1622. https://doi.org/10.1016/j.oceaneng.2005.10.007
  35. Tayfun, M.A. and Fedele, F. (2006). Wave height distributions and nonlinear effects, Proceedings of OMAE2006, 25th International Conference on Offshore Mechanics and Arctic Engineering, Hamburg, Germany.
  36. Tung, C.C., Huang, N.E., Yuan, Y. and Long, S.R. (1989). Probability function of breaking limited surface elevation. J. Geophys. Res., 94(C1), 967-972. https://doi.org/10.1029/JC094iC01p00967
  37. Walker, D.A.G., Taylor, P.H. and Taylor, R.E. (2004). The shape of large surface waves on the open sea and the draupner new year wave. Appl. Ocean Res., Elsevier Science, 26, 73-83. https://doi.org/10.1016/j.apor.2005.02.001