DOI QR코드

DOI QR Code

The Properties of Multi-Layered Optical Thin Films Fabricated by Pulsed DC Magnetron Sputtering

Pulsed DC 마그네트론 스퍼터링으로 제조된 다층 광학박막의 특성

  • Kim, Dong-Won (Department of Advanced Materials Engineering, Kyonggi University)
  • 김동원 (경기대학교 신소재공학과)
  • Received : 2019.08.16
  • Accepted : 2019.08.29
  • Published : 2019.08.30

Abstract

Optical thin films were deposited by using a reactive pulsed DC magnetron sputtering method with a high density plasma(HDP). In this study, the effect of sputtering process conditions on the microstructure and optical properties of $SiO_2$, $TiO_2$, $Nb_2O_5$ thin films was clarified. These thin films had flat and dense microstructure, stable stoichiometric composition at the optimal conditions of low working pressure, high pulsed DC power and RF power(HDP). Also, the refractive index of the $SiO_2$ thin films was almost constant, but the refractive indices of $TiO_2$ and $Nb_2O_5$ thin films were changed depending on the microstructure of these films. Antireflection films of $Air/SiO_2/Nb_2O_5/SiO_2/Nb_2O_5/SiO_2/Nb_2O_5/Glass$ structure designed by Macleod program were manufactured by our developed sputtering system. Transmittance and reflectance of the manufactured multilayer films showed outstanding value with the level of 95% and 0.3%, respectively, and also had excellent durability.

Keywords

References

  1. C. K. Hwangbo, Thin film optics, second Ed, Techmedia, Seoul (2009) 74-114.
  2. H. Y. Hsueh, H. Y. Chen, M. S. She, C. K. Chen, R. M. Ho, S. Gwo, H. Hasegawa, E. L. Thomas, Inorganic Gyroid with Exceptionally Low Refractive Index from Block Copolymer Templating, Nano Lett., 10 (2010) 4994-5000. https://doi.org/10.1021/nl103104w
  3. Y. J. Hong, Organic / Inorganic composite coating for flat panel display, Polymer Science and Technology, 17(2) (2006) 217-225.
  4. G. K. Chinyama, A. Roos, B. Karlsson, Stability of antireflection coatings for large area glazing, Solar Energy, 50(2) (1993) 105-111. https://doi.org/10.1016/0038-092X(93)90081-X
  5. T. H. Allen, Properties of ion assisted deposited Silica and Titania Films, Proc. SPIE, 325 (1982) 93-100.
  6. A. P. Bradford, G. Hass, M. Mcfarland, The effect of the substrate temperature on the optical properties of reactively evaporated silicon oxide films, Thin Solid Films, 42 (1977) 361-367. https://doi.org/10.1016/0040-6090(77)90371-6
  7. P. Lobl, M. Huppertz, D. Mergel, Nucleation and growth in $TiO_2$ films prepared by sputtering and evaporation, Thin Solid Films, 251 (1994) 72-79. https://doi.org/10.1016/0040-6090(94)90843-5
  8. M. Radecka, K. Z. Akrzewska, H. Czternastek, T. Stapinski, S. Debrus, The influence of thermal annealing on the structural, electrical and optical properties of $TiO_{2-x}$ thin films, Appl. Surf. Sci., 65/66 (1993) 227-234. https://doi.org/10.1016/0169-4332(93)90663-V
  9. N. Ozer, M. D. Rubin, C. M. Lampert, Optical and electrochemical characteristics of niobium oxide films prepared by sol-gel process and magnetron sputtering A comparison, Sol. Energy Mater. Sol. Cells, 40 (1996) 285-296. https://doi.org/10.1016/0927-0248(95)00147-6
  10. P. L. Provenzano, G. R. Jindal, J. R. Sweet, W. B. White, Flame-excited luminescence in the oxides $Ta_2O_5,\;Nb_2O_5,\;TiO_2,\;and\;SnO_2$, J. Lumin., 92(4) (2001) 297-305. https://doi.org/10.1016/S0022-2313(00)00264-7
  11. G. Agarwal, G. B. Reddy, Study of surface morphology and optical properties of $Nb_2O_5$ thin films with annealing, J. Mater. Sci.: Mater. Electron., 16 (2005) 21-24.
  12. W. Hu, Y. Zhao, Z. Liu, Y. Zhu, NbS2/Nb2O5 nanocables, Nanotechnology, 18(9) (2007) 1-5.
  13. L. A. Stelmack, C. T. Thurman, G. R. Thompson, Review of ion-assisted deposition: Research to production, Nucl. Instrum. Methods Phys. Res. B, 37 (1989) 787-793.
  14. K. H. Guenther, R. Mennignen, Thin film technology in design and production of optical systems, Proc. Soc. photo-opt. Instrum. Eng., 399 (1983) 246-258.
  15. M. Meissner, T. Tolg, P. Baroch, J. Musil, Elimination of arcing in reactive sputtering of $Al_2O_3$ thin films prepared by DC pulse single magnetron, Plasma Process. Polym., 8 (2011) 500-504. https://doi.org/10.1002/ppap.201000208
  16. P. J. Kelly, G. West, Y. N. Kok, J. W. Bradley, I. Swindells, G. C. B. Clarke, A comparison of the characteristics of planar and cylindrical magnetrons operating in pulsed DC and AC modes, Surf. Coat. Technol., 202 (2007) 952-956. https://doi.org/10.1016/j.surfcoat.2007.04.130
  17. A. Dirks, J. Leamy, Columnar microstructure in vapor-deposited thin films, Thin Solid Films, 47 (1977) 219-233. https://doi.org/10.1016/0040-6090(77)90037-2
  18. A. Antony, M. Nisha, R. Manoj, M. K. Jayaraj, influence of target to substrate spacing on the properties of ITO thin films, Appl. Surf. Sci., 225(1-4) (2004) 294-301. https://doi.org/10.1016/j.apsusc.2003.10.017
  19. D. W. Kim, S. H. Cho, N. C. Kim, S. H. Kim, J. H. Yang, H. S. Shin, Korea Patent (2018) KR 10-1861701.
  20. J. M. E. Harper, J. J. Cuomo, R. J. Gambino, H. R. Kaufman, R. S. Robinson, mean free path of negative ions in diode sputtering, J. Vac. Sci. Technol., 15 (1978) 1597-1600. https://doi.org/10.1116/1.569816
  21. J. A. Thornton, Influence of apparatus geometry and deposition conditions on the structure and topography of thick sputtered coatings, J. Vac. Sci. Technol., 11 (1974) 666-670. https://doi.org/10.1116/1.1312732
  22. S. M. Hu, L. V. Gregor, Silicon nitride films by reactive sputtering, J. Electrochem. Soc., 114(8) (1967) 826-833. https://doi.org/10.1149/1.2426749
  23. C. H. Kim, J. Y. Han, N. C. Kim, S. K. Ryi, D. W. Kim, Characteristics of dense palladium alloy membranes formed by nano-scale nucleation and lateral growth, J. Membr. Sci., 502 (2016) 57-64. https://doi.org/10.1016/j.memsci.2015.12.010
  24. J. Hopwood, Review of inductively coupled plasmas for plasma processing, Plasma Sources Sci. Technol., 1 (1992) 109-116. https://doi.org/10.1088/0963-0252/1/2/006
  25. D. M. Ullevig, J. F. Evans, Sputtering yields of electrochemically deposited metal oxide thin films, J. Vac. Sci. Technol., 20(3) (1982) 379-382. https://doi.org/10.1116/1.571471
  26. E. Medvedovski, N. Alvarez, O. Yankov, M. K. Olsson, Advanced indium-tin oxide ceramics for sputtering targets, Ceramics International, 34(5) (2008) 1173-1182. https://doi.org/10.1016/j.ceramint.2007.02.015
  27. P. Gao, L. J. Meng, M. P. dos Santos, V. Teixeira, M. Andritschky, Influence of sputtering power and the substrate-target distance on the properties of $ZrO_2$ films prepared by RF reactive sputtering, Thin Solid Films, 377-378 (2000) 557-561. https://doi.org/10.1016/S0040-6090(00)01291-8
  28. M. Jerman, Z. Qiao, D. Mergel, Refractive index of thin films of $SiO_2,\;ZrO_2,\;and\;HfO_2$ as a function of the films' mass density, Appl. Opt., 44 (2005) 3006-3012. https://doi.org/10.1364/AO.44.003006
  29. M. Harris, M. Bowden, H. A. Macleod, Refractive index variations in dielectric films having columnar microstructure, Opt. Commun., 51(1) (1984) 29-32. https://doi.org/10.1016/0030-4018(84)90277-3
  30. E. Paparazzo, XPS and auger spectroscopy studies on mixtures of the oxides $SiO_2,\;Al_2O_3,\;Fe_2O_3,\;and\;Cr_2O_3$, J. Electron Spectroscopy and Related Phenomena, 43 (1987) 97-112. https://doi.org/10.1016/0368-2048(87)80022-1
  31. M. Mazur, M. Kalisz, D. Wojcieszak, M. Grobelny, P. Mazur, D. Kaczmarek, J. Domaradzki, Determination of structural, mechanical and corrosion properties of $Nb_2O_5\;and\;(NbyCu_{1-y})O_x$thin films deposited on $Ti_6Al_4V$ alloy substrates for dental implant applications, Materials Sci. and Eng. C, 47 (2015) 211-221. https://doi.org/10.1016/j.msec.2014.11.047
  32. Y. J. Lee, S. Baik, Effect of Deposition Parameters on MgO Thin Films on Si(100) Substrates by Reactive RF Magnetron Sputtering, J. Kor. Ceram. Soc., 31 (1994) 643-650.
  33. M. H. Suhail, G. Mohan Rao, S. Mohan, dc reactive magnetron sputtering of titanium-structural and optical characterization of $TiO_2$ films, J. Appl. Phys., 71(3) (1992) 1421-1427. https://doi.org/10.1063/1.351264
  34. H. K. Rulker, G. Paesold, E. Ritter, Refractive indices of $TiO_2$ films produced by reactive evaporation of various titanium-oxygen phases, Appl. Opt., 15(12) (1976) 2986-2991. https://doi.org/10.1364/AO.15.002986
  35. J. Rodriguez, M. Gomez, J. Ederth, G. A. Niklasson, C. G. Granqvist, thickness dependence of the optical properties of sputter deposited Ti oxide films, Thin Solid Films, 365 (2000) 119-125. https://doi.org/10.1016/S0040-6090(99)01109-8
  36. I. Sta, M. Jlassi, M. Hajji, M. F. Boujmil, R. Jerbi, M. Kandyla, M. Kompitsas, H. Ezzaouia, Structural and optical properties of $TiO_2$ thin films prepared by spin coating, J. Sol-Gel Sci. Technol., 72 (2014) 421-427. https://doi.org/10.1007/s10971-014-3452-z
  37. S. Y. Kim, Optical Structure of multilayer coatings of antireflection lenses and their transmission characteristics, J. Opt. Soc. Kor., 6(4) (1995) 259-265.
  38. F. J. Pern, R. Noufi, B. To, C. DeHart, X. Li, S. H. Glick, Degradation of ZnO-based window layers for thin-film CIGS by accelerated stress exposures, Proc. SPIE Int. Soc. Opt. Eng., 7048 (2008) 70480P/1-70480P/14.
  39. M. A. Yaklin, D. A. Schneider, K. Norman, J. E. Granata, C. L. Staiger, Impacts of Humidity and Temperature on the Performance of Transparent Conducting Zinc Oxide, IEEE Photovoltaic Specialists Conference, 35 (2010) 2493-2496.
  40. N. E. Holm, O. Christensen, IR analysis of water absorption in optical multilayer structures, Thin Solid Films, 67 (1980) 239-244. https://doi.org/10.1016/0040-6090(80)90455-1
  41. T. M. Christmas, D. Richmond, The durability and stability of evaporated thin film filters, Opt. Laser Technol., 9 (1977) 109-116. https://doi.org/10.1016/0030-3992(77)90080-9