DOI QR코드

DOI QR Code

Characterization of the Morphology and Corrosion Resistance in Electroless Ni-P-TiO2 Composite Coating Prepared by TiO2 Contents

TiO2 함량에 따르는 무전해 Ni-P-TiO2 복합도금층 특성 연구

  • Byoun, Young-Min (Metal& Machinery Team, Korea Conformity Laboratories (KCL)) ;
  • Kim, Ho-Young (Metal& Machinery Team, Korea Conformity Laboratories (KCL)) ;
  • lee, Jae-Woong (Dept. of Metal.Material Process Engineering, College of Engineering, Inha University) ;
  • Hwang, Hwan-il (KOREA POLYTECHNICS)
  • 변영민 (한국건설생활환경시험연구원) ;
  • 김호영 (한국건설생활환경시험연구원) ;
  • 이재웅 (인하대학교 금속재료공정공학과) ;
  • 황환일 (한국폴리텍대학)
  • Received : 2019.06.24
  • Accepted : 2019.08.29
  • Published : 2019.08.30

Abstract

Electroless Ni-P coatings are widely used in the chemical, mechanical, and electronic industries because of their excellent wear and abrasion resistance. In this study, the effect of $TiO_2$ particles of composite coating was investigated. To improve the corrosion resistance, electroless $Ni-P-TiO_2$composite coating was studied by varying the $TiO_2$ content. The morphology and phase structure of $Ni-P-TiO_2$ composite coatings were analyzed by scanning electron microscopy(SEM), X-ray diffractometry(XRD) and X-ray photoelectron spectroscopy(XPS). The result showed that $Ni-P-TiO_2$composite coating is composed of Ni, P, Ti and O. It exhibits an amorphous structure, high hardness and good corrosion resistance to the substrate. $Ni-P-TiO_2$ composite coatings have higher open circuit potential than that of the substrate, which obtained at $TiO_2$ content of 5.0 g/L optimal integrated properties.

Keywords

References

  1. Y.W. Song, D.Y. Shan, E.H. Han, Available online at www.sciencedirect.com Electrochimica Acta 53 (2008) 2135-2143High corrosion resistance of electroless compositeplating coatings on AZ91D magnesium alloys, Electrochim. Acta 53 (2008) 2135. https://doi.org/10.1016/j.electacta.2007.09.026
  2. S. Alirezaei, S.M. Monirvaghefi, M. Salehi, et al., Wear 262 (2007) 978-985 https://doi.org/10.1016/j.wear.2006.10.013
  3. Wear behavior of Ni-P and Ni-P-$Al_2O_3$electroless coatings, Wear 262 (2007) 978. https://doi.org/10.1016/j.wear.2006.10.013
  4. Y.T. Wu, H.Z. Liu, B. Shen, et al., The friction and wear of electroless Ni-P matrix with PTFEand/or SiC particles compositeTribol. Int. 39 (2006) 553. https://doi.org/10.1016/j.triboint.2005.04.032
  5. M. Ebrahimian-Hosseinabadi, K. Azari-Dorcheh, S.M. MoonirVaghefi, Wear behavior of electroless Ni-P-B4C composite coatings, Wear 260(2006) 123. https://doi.org/10.1016/j.wear.2005.01.020
  6. J. Novakovic, P. Vassiliou, K.I. Samara, et al., Processes and properties of electroless Ni-PZrO2 composite coating on AZ91D magnesium alloy, Surf. Coat. Technol. 201 (2006) 895. https://doi.org/10.1016/j.surfcoat.2006.01.005
  7. G. Straffelini, D. Colombo, A. Molinari, Surface durability of electroless Ni-P composite deposits, Wear 236 (1999) 179. https://doi.org/10.1016/S0043-1648(99)00273-2
  8. Y.W. Song, D.Y. Shan, R.S. Chen, et al., Chin. J. Nonferr, Processes and properties of electroless Ni-P-ZrO2 composite coating on AZ91D magnesium alloy, Met. 16 (2006) 625. https://doi.org/10.1007/BF00734109
  9. B. Szczygiel, A. Turkiewicz, J. Serafinczuk, Surface morphology and structure of Ni-P, Ni- P-$ZrO_2$,Ni-W-P,Ni-W-P-$ZrO_2$coatings deposited by electroless method, Surf. Coat. Technol. 202 (2008) 1904. https://doi.org/10.1016/j.surfcoat.2007.08.016
  10. A.A. Aal, S.M. El-Sheikh, Y.M.Z. Ahmed, Electrodeposited composite coating of Ni-W-P with nano-sized rod- andspherical-shaped SiC particles, Mater. Res. Bull. 44 (2009) 151. https://doi.org/10.1016/j.materresbull.2008.03.008
  11. G.H. Zhou, H.Y. Ding, F. Zhou, et al., J. Structure and Mechanical Properties of Ni-P-Nano $Al_2\;O_3$ Composite Coatings Synthesized by Electroless Plating, Iron Steel Res. Int. 15 (2008) 65.
  12. J. Novakovic, P.Vassiliou, Kl. Samara, Th. Argyropoulos, Electroless NiP-$TiO_2$ compositecoatings: their production and properties, Surf. Coat. Technol. 201(2004) 895-901. https://doi.org/10.1016/j.surfcoat.2006.01.005
  13. M. Momenzadeh, S. Sanjabi, The effect of $TiO_2$ nanoparticle codeposition on microstructure and corrosion resistance of electroless Ni-P coating, Corr. 63 (2012) 614-619.
  14. A. Lasia, A. Rami, Kinetics of hydrogen evolution on nickel electrodes, J. Electroanal. 294 (1990) 123. https://doi.org/10.1016/0022-0728(90)87140-F
  15. J.P. Diard, B. Le Gorrec, S. Maximovich, Deuxieme Forum sur les Impédances Elect rochimiques, Electrochim. Acta 35 (1990)1099. https://doi.org/10.1016/0013-4686(90)90049-6
  16. H. Chen, S. Trasatti, Cathodic behaviour of $IrO_2$ electrodes in alkaline solution: Part 2. Kinetics and electrocatalysis of H2 evolution J. Electroanal. Chem. 357 (1993) 91. https://doi.org/10.1016/0022-0728(93)80376-S
  17. S. Trasatti, in: H. Gerischer, C.W. Tobias (Eds.), Advances in Electrochemical Science and Engineering, vol. 2, VCH, Weinheim, 1992, p. 2.
  18. K. Hiratsuka, Y. Abe, S. Kawashima, Effect of in-situ electroless plating on friction and wear of metals, Wear[J], 910 (2003) 916.
  19. Weiwei Chen , Wei Gao, Yedong He, A novel electroless plating of Ni-P-$TiO_2$nano-composite coatings, Surface & Coatings Technology 204 (2010) 2493-2498. https://doi.org/10.1016/j.surfcoat.2010.01.032
  20. C.T.J.Low et al., Electrodeposition of composite coatings containing nanoparticles in a metal deposit, Surface & Coatings Technology, 201 (2006) 371-383. https://doi.org/10.1016/j.surfcoat.2005.11.123
  21. J. S. Hans Ferkel, Nanostructured Ni-$Al_2O_3$ films prepared by DC and pulsed DC electroplating, Scripta Mater, 44 (2001) 1813-816. https://doi.org/10.1016/S1359-6462(01)00799-0
  22. Weiwei Chen, Wei Gao, Yedong He, A novel electroless plating of Ni-P-$TiO_2$nano-composite coatings, Surface & Coatings Technology 204 (2010) 2493-2498. https://doi.org/10.1016/j.surfcoat.2010.01.032
  23. XiaoyanWu,JianMao, Zhongke Zhang, Yun Che, Improving the properties of 211Z Al alloy by enhanced electroless Ni-P-$TiO_2$ nanocomposite coatings with $TiO_2$ sol, Surface & Coatings Technology 270 (2015) 170-174. https://doi.org/10.1016/j.surfcoat.2015.03.006
  24. P Gadhari, P Sahoo, Optimization of Coating Process Parameters to Improve Microhardness of Ni-P-TiO2 Composite Coatings, Materials Today: Proceedings. 2 (2015) 2367-2374.
  25. Y. G. Ko, K. M. Lee, K. R. Shin, D. H. Shin, Effect of Potassium Permanganate on Corrosion Behavior of Magnesium Alloy Prepared by MicroArc Oxidation, Kor. J. Met. Mater, 48 (2010) 724-729. https://doi.org/10.3365/kjmm.2010.48.08.724
  26. G. Lu, P. Evans, G. Zangari, Investigations of the effect of chromate conversion coatings on the corrosion resistance of Ni-based alloys J. Electrochem. Soc. 49 (2004) 1461-1473.
  27. J. Novakovic, P. Vassiliou, Kl. Samara, Th. Argyropoulos, Electroless NiP-TiO2 composite coatings: Their production and properties, Surface & Coatings Technology 201 (2006) 895-901. https://doi.org/10.1016/j.surfcoat.2006.01.005