참고문헌
- N.S. Lewis, D.G. Nocera, Powering the planet: Chemical challenges in solar utilization, Proc. Natl. Acad. Sci. USA 103 (2006) 15729-15735. https://doi.org/10.1073/pnas.0603395103
- P.V. Kamat, Meeting the clean energy demand: Nanostructure architecture for sloar energy conversion, J. Phys. Chem. C 111 (2007) 2834-2860. https://doi.org/10.1021/jp066952u
- Y, Yang, D. Xu, Q. Wu, P. Diao, Cu2O/CuO bilayered composite as a high-efficiency photocathode for photoelectrochemical hydrogen evolution reaction, Sci. Rep. 6 (2016) 30158. https://doi.org/10.1038/srep30158
- A. Kudo, Y. Miseki, Heterogeneous photocatalyst materials for water splitting, Chem. Soc. Rev. 38 (2009) 253-278. https://doi.org/10.1039/B800489G
- F.E. Osterloch, Inorganic nanostructures for photoelectrochemical and photocatalytic water splitting, Chem, Soc. Rev. 42 (2013) 2294-2320. https://doi.org/10.1039/C2CS35266D
- X. Chen, S. Chen, L. Guo, S.S. Mao, Semiconductor-based photocatalytic hydrogen generation, Chemical Reviews 110 (2010) 6503-6570. https://doi.org/10.1021/cr1001645
- Y. Liu, Y. Gu, X. Yan, Z. Kang, S. Lu, Y. Sun, Y. Zhang, Design of sandwich-structured ZnO/ZnS/Au photoanode for enhanced efficiency of photoelectrochemical water splitting, Nano Res. 8 (2015) 2891-2900. https://doi.org/10.1007/s12274-015-0794-y
- R. van de Krol, M. Gratzel, Photoelectrochemical Hydrogen Production, Springer, New York (2012).
- M.G. Walter et al., Solar water splitting cells, Chem. Rev. 110 (2010), 6446-6473. https://doi.org/10.1021/cr1002326
- J.-H. Park, H. Kim, Photoelectrochemical properties of a vertically aligned zinc oxide nanorod photoelectrode, J. Korean Ins. Surf. Eng. 51 (2018), 237-242. https://doi.org/10.5695/JKISE.2018.51.4.237
- H.M. Chen et al., Nano-architecture and material designs for water splitting photoelectrodes, Chem. Soc. Rev. 41 (2012) 5654-5671. https://doi.org/10.1039/c2cs35019j
- K. Rajeshwar, N.R. de Tacconi, G. Ghadimkhani, W. Chanmanee, C. Janaky, Tailoring copper oxide semiconductor nanorod arrays for photoelectrochemical reduction of carbon dioxide to methanol, ChemPhysChem 14 (2013) 2251-2259. https://doi.org/10.1002/cphc.201300080
- S.J.A. Moniz, S.A. Shevlin, D.J. Martin, Z.-X. Guo, J. Tang, Visible-light driven heterojunction photocatalysts for water splitting-a critical review, Energy Environ. Sci. 8 (2015) 731-759. https://doi.org/10.1039/C4EE03271C
- Z. Kang, X. Yan, Y. Wang, Z. Bai, Y. Liu, Z. Zhang, P. Lin, X. Zhang, H. Yuen, X. Zhang, Y. Zhang, Electric structure engineering of Cu2O film/ZnO nanorods array all-oxide p-n heterostructure for enhanced photoelectrochemical properties and self-powered biosensing application, Sci. Rep. 5 (2015), 7882. https://doi.org/10.1038/srep07882
- L. Liu, K. Hong, T. Hu, M. Xu, Synthesis of aligned copper oxide nanorod arrays by a seed mediated hydrothermal method, J. Alloys Compd. 511 (2012) 195-197. https://doi.org/10.1016/j.jallcom.2011.09.028
- P.Y. Yu, Y.R. Shen, Y. Petroff, Resonance Raman scattering in Cu2O at the blue and indigo excitons, Solid State Commun. 12 (1973), 973-975. https://doi.org/10.1016/0038-1098(73)90018-5
- P.Y. Yu, Y.R. Shen, Resonance Raman studies in Cu2O. I. The phonon-assisted 1s yellow excitonic absorption edge, Phys. Rev. B 12 (1975), 1377-1394. https://doi.org/10.1103/PhysRevB.12.1377
- H.F. Goldstein, D-s. Kim, P.Y. Yu, L.C. Bourne, J-P. Chaminade, L. Nganga, Raman study of CuO single crystal, Phys. Rev. B 41 (1990), 7192-7194. https://doi.org/10.1103/PhysRevB.41.7192
- Z. Chen, H.N. Dinh, E. Miller, Photoelectrochemical Water Splitting: Standards, Experimental Methods, and Protocols, Springer, New York (2013) 10.