DOI QR코드

DOI QR Code

Cu2O Thin Film Photoelectrode Embedded with CuO Nanorods for Photoelectrochemical Water Oxidation

  • Kim, Soyoung (Graduate School of Advanced Circuit Substrate Engineering, Chungnam National University) ;
  • Kim, Hyojin (Department of Materials Science and Engineering, Chungnam National University)
  • Received : 2019.10.24
  • Accepted : 2019.10.31
  • Published : 2019.10.31

Abstract

Assembling heterostructures by combining dissimilar oxide semiconductors is a promising approach to enhance charge separation and transfer in photoelectrochemical (PEC) water splitting. In this work, the CuO nanorods array/$Cu_2O$ thin film bilayered heterostructure was successfully fabricated by a facile method that involved a direct electrodeposition of the $Cu_2O$ thin film onto the vertically oriented CuO nanorods array to serve as the photoelectrode for the PEC water oxidation. The resulting copper-oxide-based heterostructure photoelectrode exhibited an enhanced PEC performance compared to common copper-oxide-based photoelectrodes, indicating good charge separation and transfer efficiency due to the band structure realignment at the interface. The photocurrent density and the optimal photocurrent conversion efficiency obtained on the CuO nanorods/$Cu_2O$ thin film heterostructure were $0.59mA/cm^2$ and 1.10% at 1.06 V vs. RHE, respectively. These results provide a promising route to fabricating earth-abundant copper-oxide-based photoelectrode for visible-light-driven hydrogen generation using a facile, low-cost, and scalable approach of combining electrodeposition and hydrothermal synthesis.

Keywords

References

  1. N.S. Lewis, D.G. Nocera, Powering the planet: Chemical challenges in solar utilization, Proc. Natl. Acad. Sci. USA 103 (2006) 15729-15735. https://doi.org/10.1073/pnas.0603395103
  2. P.V. Kamat, Meeting the clean energy demand: Nanostructure architecture for sloar energy conversion, J. Phys. Chem. C 111 (2007) 2834-2860. https://doi.org/10.1021/jp066952u
  3. Y, Yang, D. Xu, Q. Wu, P. Diao, Cu2O/CuO bilayered composite as a high-efficiency photocathode for photoelectrochemical hydrogen evolution reaction, Sci. Rep. 6 (2016) 30158. https://doi.org/10.1038/srep30158
  4. A. Kudo, Y. Miseki, Heterogeneous photocatalyst materials for water splitting, Chem. Soc. Rev. 38 (2009) 253-278. https://doi.org/10.1039/B800489G
  5. F.E. Osterloch, Inorganic nanostructures for photoelectrochemical and photocatalytic water splitting, Chem, Soc. Rev. 42 (2013) 2294-2320. https://doi.org/10.1039/C2CS35266D
  6. X. Chen, S. Chen, L. Guo, S.S. Mao, Semiconductor-based photocatalytic hydrogen generation, Chemical Reviews 110 (2010) 6503-6570. https://doi.org/10.1021/cr1001645
  7. Y. Liu, Y. Gu, X. Yan, Z. Kang, S. Lu, Y. Sun, Y. Zhang, Design of sandwich-structured ZnO/ZnS/Au photoanode for enhanced efficiency of photoelectrochemical water splitting, Nano Res. 8 (2015) 2891-2900. https://doi.org/10.1007/s12274-015-0794-y
  8. R. van de Krol, M. Gratzel, Photoelectrochemical Hydrogen Production, Springer, New York (2012).
  9. M.G. Walter et al., Solar water splitting cells, Chem. Rev. 110 (2010), 6446-6473. https://doi.org/10.1021/cr1002326
  10. J.-H. Park, H. Kim, Photoelectrochemical properties of a vertically aligned zinc oxide nanorod photoelectrode, J. Korean Ins. Surf. Eng. 51 (2018), 237-242. https://doi.org/10.5695/JKISE.2018.51.4.237
  11. H.M. Chen et al., Nano-architecture and material designs for water splitting photoelectrodes, Chem. Soc. Rev. 41 (2012) 5654-5671. https://doi.org/10.1039/c2cs35019j
  12. K. Rajeshwar, N.R. de Tacconi, G. Ghadimkhani, W. Chanmanee, C. Janaky, Tailoring copper oxide semiconductor nanorod arrays for photoelectrochemical reduction of carbon dioxide to methanol, ChemPhysChem 14 (2013) 2251-2259. https://doi.org/10.1002/cphc.201300080
  13. S.J.A. Moniz, S.A. Shevlin, D.J. Martin, Z.-X. Guo, J. Tang, Visible-light driven heterojunction photocatalysts for water splitting-a critical review, Energy Environ. Sci. 8 (2015) 731-759. https://doi.org/10.1039/C4EE03271C
  14. Z. Kang, X. Yan, Y. Wang, Z. Bai, Y. Liu, Z. Zhang, P. Lin, X. Zhang, H. Yuen, X. Zhang, Y. Zhang, Electric structure engineering of Cu2O film/ZnO nanorods array all-oxide p-n heterostructure for enhanced photoelectrochemical properties and self-powered biosensing application, Sci. Rep. 5 (2015), 7882. https://doi.org/10.1038/srep07882
  15. L. Liu, K. Hong, T. Hu, M. Xu, Synthesis of aligned copper oxide nanorod arrays by a seed mediated hydrothermal method, J. Alloys Compd. 511 (2012) 195-197. https://doi.org/10.1016/j.jallcom.2011.09.028
  16. P.Y. Yu, Y.R. Shen, Y. Petroff, Resonance Raman scattering in Cu2O at the blue and indigo excitons, Solid State Commun. 12 (1973), 973-975. https://doi.org/10.1016/0038-1098(73)90018-5
  17. P.Y. Yu, Y.R. Shen, Resonance Raman studies in Cu2O. I. The phonon-assisted 1s yellow excitonic absorption edge, Phys. Rev. B 12 (1975), 1377-1394. https://doi.org/10.1103/PhysRevB.12.1377
  18. H.F. Goldstein, D-s. Kim, P.Y. Yu, L.C. Bourne, J-P. Chaminade, L. Nganga, Raman study of CuO single crystal, Phys. Rev. B 41 (1990), 7192-7194. https://doi.org/10.1103/PhysRevB.41.7192
  19. Z. Chen, H.N. Dinh, E. Miller, Photoelectrochemical Water Splitting: Standards, Experimental Methods, and Protocols, Springer, New York (2013) 10.